# LTPP Pavement Maintenance Materials: SPS-4 Supplemental Joint Seal Experiment, Final Report

PUBLICATION NO. FHWA-RD-99-151

OCTOBER 1999





U.S. Department of Transportation

Federal Highway Administration

Research, Development, and Technology Turner-Fairbank Highway Research Center 6300 Georgetown Pike McLean, VA 22101-2296



#### **FOREWORD**

During the conduct of the Strategic Highway Research Program (SHRP) on highway operations, rigid pavement, preventative maintenance treatments were placed on pavements throughout the United States. The placement and performance monitoring of these Specific Pavement Study (SPS)-4 projects have been conducted under the SHRP and Federal Highway Administration (FHWA) Long-Term Pavement Performance (LTPP) program. The information derived from this study will contribute greatly toward advancing the state of the practice of joint sealing and resealing of portland cement concrete (PCC) pavements.

This report provides information to pavement engineers and maintenance personnel on the results of the SPS-4 joint seal experiment. It presents the performance and cost data of various joint sealant materials, and procedures for sealing joints in PCC pavements.

This report will be of interest to anyone concerned with the maintenance and rehabilitation of PCC pavements.

T. Paul Teng, P.E.

Director

Office of Infrastructure

Research and Development

#### **NOTICE**

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof. This report does not constitute a standard, specification, or regulation.

The United States Government does not endorse products or manufacturers. Trade and manufacturers' names appear in this report only because they are considered essential to the object of the document.

Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. FHWA-RD-99-151 4. Title and Subtitle 5. Report Date LTPP PAVEMENT MAINTENANCE MATERIALS: SPS-4 SUPPLEMENTAL October 1999 JOINT SEAL EXPERIMENT, FINAL REPORT 6. Performing Organization Code 8. Performing Organization Report No. 7. Author(s) K.L. Smith, M.A. Pozsgay, L.D. Evans, and A.R. Romine 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) **ERES Consultants** 11. Contract or Grant No. A Division of Applied Research Associates, Inc. 505 W. University Avenue DTFH61-93-C-00051 Champaign, IL 61820-3915 13. Type of Report and Period Covered 12. Sponsoring Agency Name and Address Final Report Office of Infrastructure Research and Development October 1993 - June 1999 Federal Highway Administration 6300 Georgetown Pike 14. Sponsoring Agency Code McLean, Virginia 22101-2296 15. Supplementary Notes Contracting Officer's Technical Representative (COTR): Shahed Rowshan, HRDI Project Consultants: Charlie Smyth 16. Abstract The Strategic Highway Research Program (SHRP) Specific Pavement Studies (SPS)-4 preventive maintenance experiment was established to determine the benefits and cost-effectiveness of concrete maintenance activities, such as joint sealing and slab undersealing. Since 1989, several test sites have been constructed throughout the United States for this purpose. A secondary investigation at some of these SPS-4 sites has focused on the long-term effectiveness of various joint seal treatments (i.e., combinations of sealant material and installation method) at preventing the infiltration of water into the pavement structure. Referred to as supplemental joint seal sites, a total of six such sites were constructed adjacent to SPS-4 test sites, and the performance of the various joint seal treatments have been monitored under the Federal Highway Administration (FHWA) Long-Term Monitoring (LTM) of Pavement Maintenance Materials Test Sites project. This report documents the entire SPS-4 supplemental joint seal study, including the installation of 29 unique joint seal treatments, the laboratory testing of experimental sealant materials, and the multi-year performance monitoring of the various joint seal treatments. It also discusses the results of comprehensive statistical analyses conducted on sealant material performance. 17. Key Words 18. Distribution Statement No restrictions. This document is available to the Concrete pavement, pavement maintenance, joints, public through the National Technical Information joint sealing, joint sealant, performance, service life,

Service, Springfield, Virginia 22161.

21. No. of Pages

172

22. Price

20. Security Classif. (of this page)

cost-effectiveness

19. Security Classif. (of this report)

|    | D   |   |
|----|-----|---|
| 2  |     |   |
|    |     |   |
|    |     |   |
|    |     |   |
|    |     |   |
|    |     |   |
|    |     |   |
|    |     |   |
| 7  | _   |   |
| 1  | -   |   |
| į  |     | - |
| к  | D   |   |
|    | 3   |   |
| а  |     |   |
| ٠  | •   |   |
| _  | _   |   |
| ٠  | -   |   |
| 12 |     |   |
| 1  | n   |   |
|    |     |   |
| 4  | LO. |   |
|    |     |   |
|    | c   |   |
|    | ,   |   |
| -  | •   |   |
| 4  | •   |   |
| e  | ۰   |   |
| L  | L   |   |
| Ξ  |     | ' |
| 7  | _   | • |
|    |     |   |
|    |     |   |
|    |     |   |
|    |     |   |

|               | ) *IS                                                   | Si* (MOD                  | NEE                           | rric) (      | CONVER         | METRIC) CONVERSION FACTORS            | RS                           | , s                                         |                 |
|---------------|---------------------------------------------------------|---------------------------|-------------------------------|--------------|----------------|---------------------------------------|------------------------------|---------------------------------------------|-----------------|
|               | APPROXIMATE CONVERSIONS TO SI UNITS                     | NVERSIONS TO              | SI UNITS                      |              |                | APPROXIMATE CONVERSIONS FROM SI UNITS | NVERSIONS FR                 |                                             |                 |
| Symbol        | When You Know                                           | Multiply By               | To Find                       | Symbol       | Symbol         | When You Know                         | Multiply By                  | To Find                                     | Symbol          |
|               |                                                         | FNGTH                     |                               |              |                |                                       | LENGTH                       |                                             |                 |
|               |                                                         | 25.4                      | ili managari ili m            | 1            | шш             | millimeters                           | 0.039                        | inches                                      | 2.              |
| : #           | faet                                                    | 0.305                     | meters                        | E 6          | ε              | meters                                | 3.28                         | feet                                        | #               |
| Ŋ.            | yards                                                   | 0.914                     | meters                        | Ε            | ε.             | meters                                | 1.09                         | yards                                       | S. E            |
| Ē             | miles                                                   | 1.61                      | kilometers                    | Æ            | Ē              | KIIOMOTO                              | 0.621                        | COMME                                       |                 |
|               |                                                         | AREA                      |                               |              |                |                                       | AREA                         |                                             |                 |
|               |                                                         | GAR 2                     | and designation of the second |              | mm²            | square millimeters                    | 0.0016                       | square inches                               | in <sup>2</sup> |
| <u> </u> 2    | square feet                                             | 0.093                     | square meters                 | Ė į          | Æ              | square meters                         | 10.764                       | square feet                                 | 3- °            |
| ž             | square yards                                            | 0.836                     | square meters                 | Ę.           | ξ.             | square meters                         | 1.195                        | square yards                                | ь с<br>С        |
| ပ္ထ           | acres                                                   | 0.405                     | hectares                      | ad .         | ra<br>km²      | square kilometers                     | 0.386                        | square miles                                | žĘ              |
|               |                                                         | VOLUME                    | sdean Anomara                 | Ę            |                |                                       | VOLUME                       |                                             |                 |
|               |                                                         |                           |                               |              |                |                                       | , 00 0                       | occurrence printer                          | <b>1</b> 0      |
| ZO #          | fluid ounces                                            | 29.57                     | milliliters                   | H<br>H       | 핕.             | milliliters                           | 0.034                        | nuid ounces                                 | 70 = 00         |
| PB.           | gallons                                                 | 3.785                     | liters                        | ٔ ب          | <u>ئ</u> ر     | illers<br>cubic meters                | 35.71                        | cubic feet                                  | 2               |
| 2 \$          | cubic vards                                             | 0.765                     | cubic meters                  | È E          | e e            | cubic meters                          | 1.307                        | cubic yards                                 | yď              |
| NOTE          | NOTE: Volumes greater than 1000   shall be shown in m3. | o I shall be shown in     | æ,                            |              |                |                                       |                              |                                             |                 |
|               | <b>1</b>                                                | 3311                      |                               |              |                |                                       | MASS                         |                                             |                 |
|               |                                                         | MASS                      |                               |              |                |                                       | 2000                         | 3000114                                     | 2               |
| 20            | secuno                                                  | 28.35                     | grams                         | 0,2          | 20.75          | grams<br>kilograms                    | 0.035<br>2.202               | dl sbruod                                   | 5 <del>요</del>  |
| ₽ ⊢           | short tons (2000 lb)                                    | 0.907                     | Kilograms<br>megagrams        | ŽΨ           | Mg             | megagrams                             | 1.103                        | short tons (2000                            | <br> -<br> Q    |
|               | TENDED                                                  | TEMBEDATIBE (Avect)       | (or "metric ton")             | (or 't')     | ()<br>()<br>() | TEMP                                  | TEMPERATURE (exact)          | ÷                                           |                 |
|               |                                                         | IATONE (BABOL)            |                               |              |                |                                       |                              |                                             | ,               |
| ĥ             | Fahrenheit                                              | 5(F-32)/9                 | Celcius                       | ပွ           | ပွ             | Celcius<br>temperature                | 1.8C + 32                    | Fahrenheit<br>temperature                   | <del> </del>    |
|               |                                                         | NCITAMINIT                |                               |              |                |                                       | ILLUMINATION                 |                                             |                 |
|               |                                                         |                           |                               |              |                |                                       | 0000                         | toot candles                                | <u>.</u>        |
| ರ್=           | foot-candles                                            | 10.76<br>3.426            | lux<br>candela/m²             | lx<br>cst/m² | × 20           | lux<br>candela/m²                     | 0.2919                       | foot-Lamberts                               | 2 €=            |
|               |                                                         | SECONDE OF CT             | -                             | }            |                | FORCE and                             | FORCE and PRESSURE or STRESS | STRESS                                      |                 |
|               | FORCE and P                                             | FORCE and PRESSORE OF STA |                               |              |                |                                       | 100                          | , , , , ,                                   | Ĭ               |
| lof<br>IbVin² | poundforce<br>poundforce per                            | 4.45<br>6.89              | newtons<br>kilopascals        | S &          | N A<br>B       | newtons<br>kilopascals                | 0.145                        | poundiorce<br>poundforce per<br>square inch | lbf/In²         |
|               | square inch                                             |                           |                               |              |                |                                       |                              | (Revised September 1993)                    | ser 1993)       |

• SI is the symbol for the International System of Units. Appropriate rounding should be made to comply with Section 4 of ASTM E380.

# TABLE OF CONTENTS

| 1.         | INTRODUCTION                                  | • •              |           | 1   |
|------------|-----------------------------------------------|------------------|-----------|-----|
|            | Objectives                                    |                  |           | . 1 |
|            | Scope                                         |                  |           | . 1 |
|            | Project Overview                              |                  |           |     |
|            | Test Site Characteristics                     |                  |           |     |
| 2.         | . TEST SITE INSTALLATIONS                     |                  | • •       | 13  |
|            | Test Site Planning, Coordination, and Layouts |                  |           |     |
|            | Installation Processes                        |                  |           |     |
|            | Field Data Collection and Analysis            |                  |           |     |
|            | Productivity and Cost Data                    |                  |           |     |
| 3.         | . MATERIAL TESTING                            |                  | • • •     | 33  |
|            | Laboratory Tests Performed                    | <br>. • • •      | • • •     | 33  |
|            | Laboratory Test Results                       | 1. 1.<br>. • • • | • • • .   | 35  |
| 4.         | . FIELD PERFORMANCE                           | • •              | • • '     | 41  |
|            | Performance Data Collection                   | . • .            | '         | 41  |
|            | Field Performance Results                     |                  | •••       | 44  |
| 5.         | DATA ANALYSIS                                 |                  |           |     |
|            | Statistical Methodology                       |                  | • • . • . | 57  |
|            | Analysis of Variance of Current Performance   |                  | • • •     | 57  |
|            | Analysis of Variance of Service Life          | • •              | (         | 65  |
|            | Laboratory Test-Field Performance Assessments | • • • •          | •••       | 74  |
| 6.         | . SUMMARY OF FINDINGS AND RECOMMENDATIONS     | :                | • •       | 75  |
|            | Findings                                      | • •              | • • • '   | 75  |
|            | Recommendations                               | • • •            | • • • '   | 78  |
| R          | REFERENCES                                    |                  | • •       | 81  |
| <b>A</b> ] | PPENDIX A. TEST SITE LAYOUTS                  | · ·              | • •       | 83  |
| <b>A</b> ] | PPENDIX B. INSTALLATION DATA                  |                  | • •       | 89  |
| A          | PPENDIX C. FIELD PERFORMANCE DATA             |                  | . 1       | 19  |

## LIST OF FIGURES

| Fig | ure |                                                                                       | Page Page |
|-----|-----|---------------------------------------------------------------------------------------|-----------|
|     | 1.  | Locations of SPS-4 supplemental joint seal test sites                                 |           |
|     | 2.  | Joint configurations for SPS-4 supplemental joint seal test sites                     |           |
|     | 3.  | Mesa, Arizona SPS-4 supplemental joint seal test site location                        |           |
|     | 4.  | Campo, Colorado SPS-4 supplemental joint seal test site location                      |           |
|     | 5.  | Wells, Nevada SPS-4 supplemental joint seal test site location                        |           |
|     | 6.  | Tremonton, Utah SPS-4 supplemental joint seal test site location                      | . 10      |
|     | 7.  | Salt Lake City, Utah SPS-4 supplemental joint seal test site location                 |           |
|     | 8.  | Heber City, Utah SPS-4 supplemental joint seal test site location                     | . 12      |
|     | 9.  | Mesa, Arizona test site layout                                                        |           |
|     |     | Campo, Colorado test site layout                                                      |           |
|     |     | Wells, Nevada test site layout                                                        |           |
|     |     | Tremonton, Utah test site layout                                                      |           |
|     |     | Salt Lake City, Utah test site layout                                                 |           |
|     |     | Heber City, Utah test site layout                                                     |           |
|     |     | Primary joint sawing operation at Wells, Nevada test site                             |           |
|     | 16. | Sandblasting operation at Wells, Nevada test site                                     | . 23      |
|     |     | Backer rod placement at Campo, Colorado test site                                     |           |
|     |     | Hot-applied sealant installation at Heber City, Utah test site                        |           |
|     | 19. | Silicone sealant pumping apparatus used at Heber City, Utah test site                 | . 25      |
|     | 20. | Mechanical installation of neoprene compression seal at Heber City, Utah test site    | . 27      |
|     |     | Manual installation of neoprene compression seal at Tremonton, Utah test site         |           |
|     | 22. | SPS-4 supplement joint seal performance evaluation form                               | . 43      |
|     | 23. | Overall performance of primary transverse joint seals at each test site               | . 45      |
|     | 24. | Overall failure of transverse joint seals at Mesa, Arizona test site                  | . 47      |
|     | 25. | Overall failure of transverse joint seals at Campo, Colorado test site                | . 47      |
|     | 26. | Overall failure of transverse joint seals at Wells, Nevada test site                  | . 48      |
|     | 27. | Overall failure of transverse joint seals at Tremonton, Utah test site                | . 48      |
|     | 28. | Overall failure of transverse joint seals at Salt Lake City, Utah test site           | . 49      |
|     | 29. | Overall failure of transverse joint seals at Heber City, Utah test site               | . 49      |
|     | 30. | Adhesion and cohesion failure in hot-applied rubberized asphalt seal                  | 50        |
|     | 31. | Spall failure in self-leveling silicone seal                                          | . 51      |
|     | 32. | Gap failure in preformed neoprene compression seal                                    | . 51      |
|     | 33. | Overall failure of longitudinal joint seals placed at Mesa, Arizona test site         | 53        |
|     | 34. | Overall failure of longitudinal joint seals placed at Wells, Nevada test site         | 53        |
|     |     | Kold Seal Neo Loop compression seal design                                            |           |
|     | 36. | Overall effectiveness groupings for Mesa, Arizona transverse joint seal treatments    | . 60      |
|     | 37. | Overall effectiveness groupings for Campo, Colorado transverse joint seal treatments  | . 60      |
|     | 38. | Overall effectiveness groupings for Wells, Nevada transverse joint seal treatments    | . 61      |
|     |     | Overall effectiveness groupings for Tremonton, Utah transverse joint seal treatments. | . 61      |
|     | 40. | Overall effectiveness groupings for Salt Lake City, Utah transverse joint seal        |           |
|     |     | treatments                                                                            | 62        |

# LIST OF FIGURES (continued)

| Fi | gure | <u>Page</u>                                                                             |
|----|------|-----------------------------------------------------------------------------------------|
|    | 41.  | Overall effectiveness groupings for Heber City, Utah transverse joint seal              |
|    |      | treatments                                                                              |
|    | 42.  | Overall effectiveness groupings for Mesa, Arizona longitudinal joint seal treatments 66 |
|    | 43.  | Overall effectiveness groupings for Wells, Nevada longitudinal joint seal treatments 66 |
|    | 44.  | Illustration of service life estimation, based on 75 percent effectiveness              |
|    | 45.  | Illustration depicting estimates of actual and predicted service lives                  |
|    | 46.  | Tukey analysis of estimated transverse joint seal service lives at Mesa, Arizona test   |
|    |      | site                                                                                    |
|    | 47.  | Tukey analysis of estimated transverse joint seal service lives at Wells, Nevada test   |
|    |      | site                                                                                    |
|    | 48.  | Tukey analysis of estimated transverse joint seal service lives at Tremonton, Utah      |
|    |      | test site                                                                               |
|    | 49.  | Tukey analysis of estimated transverse joint seal service lives at Salt Lake City,      |
|    |      | Utah test site                                                                          |
|    | 50.  | Tukey analysis of estimated transverse joint seal service lives at Heber City, Utah     |
|    |      | test site                                                                               |
|    | 51.  | Tukey analysis of estimated longitudinal joint seal service lives at Mesa, Arizona      |
|    |      | test site                                                                               |
|    | 52.  | Tukey analysis of estimated longitudinal joint seal service lives at Wells, Nevada      |
|    |      | test site                                                                               |
|    |      |                                                                                         |

### LIST OF TABLES

| <u> </u> | able | ${f 2}$                                                                                 | age  |
|----------|------|-----------------------------------------------------------------------------------------|------|
|          | 1.   | Summary of materials and procedures used for joint seal installation                    | . 7  |
|          | 2.   | Test site construction and experimental joint seal installation information             | . 13 |
|          | 3.   | Methods used for cleaning each site                                                     | . 22 |
|          | 4.   | Material costs and sealant installation times at Wells, Nevada test site                | . 31 |
|          | 5.   | Material costs at Mesa, Arizona test site                                               | . 31 |
|          | 6.   | Summary of laboratory testing of SPS-4 supplemental joint seal materials                | . 33 |
|          | 7.   | Summary of laboratory tests performed on various sealant types                          | . 34 |
|          | 8.   | Formal laboratory testing results for non-self-leveling silicone sealants installed     |      |
|          |      | at Wells, Nevada test site                                                              | . 36 |
|          | 9.   | Material manufacturer laboratory testing results for non-self-leveling silicone sealant |      |
|          |      | installed at Campo, Colorado test site                                                  | . 36 |
|          | 10.  | Formal laboratory testing results for self-leveling silicone sealants installed at      |      |
|          |      | Wells, Nevada test site                                                                 | . 37 |
|          | 11.  | Formal laboratory testing results for self-leveling silicone sealants installed at Salt |      |
|          |      | Lake City and Heber City, Utah test sites                                               | . 38 |
|          | 12.  | Material manufacturer laboratory testing results for self-leveling silicone sealant     |      |
|          |      | installed at Campo, Colorado test site                                                  | . 38 |
|          | 13.  | Material manufacturer laboratory testing results for neoprene compression seals         |      |
|          |      | installed at Campo, Colorado test site                                                  | . 39 |
|          | 14.  | Summary of SPS-4 test site inspections and corresponding treatment ages                 | . 41 |
|          | 15.  | Overall effectiveness levels of SPS-4 transverse joint seal treatments following        |      |
|          |      | 1997-1998 field inspection round                                                        | . 46 |
|          | 16.  | Summary of performance ratings                                                          |      |
|          | 17.  | Probability ratings from analysis of variance of SPS-4 transverse and longitudinal      |      |
|          |      | joint seal treatments                                                                   | . 58 |
|          | 18.  | Illustration of service life statistics computation                                     |      |
|          |      |                                                                                         |      |

#### **CHAPTER 1. INTRODUCTION**

#### **Objectives**

Joint sealants are an integral part of any jointed plain concrete (JPC) or jointed reinforced concrete (JRC) pavement. Joint sealants provide protection for the pavement in two important manners. First, they reduce the infiltration of moisture at pavement joints—moisture that can lead to softening, pumping, and erosion of the base or subgrade near the joints, and ultimately to pavement distresses, such as corner breaks and faulting. Second, joint sealants protect the pavement by preventing incompressible materials from entering the joints. These incompressibles, such as small stones, enter the joints and inhibit thermal slab movement. As joints are filled with incompressible materials and slab expansion is restrained, the result is an increase in stresses in the pavement slabs, which can result in substantial joint spalling or possibly blow-ups. In essence, the success or failure of a jointed concrete pavement may often be attributed, in part, to the success or failure of the joint sealants.

The Strategic Highway Research Program (SHRP) acknowledged the important role of joint sealants in the performance of jointed concrete pavements and the need for research in this area. The SHRP Specific Pavement Studies (SPS)-4 experiment (Preventive Maintenance Effectiveness of Rigid Pavements), which involved the construction of several test sites nationwide, was primarily developed to answer questions about the effectiveness of joint sealing. Does sealing impart additional life to concrete pavements? Is sealing a cost-effective proposition?

Six particular SPS-4 sites, designated as supplemental joint seal sites, were constructed in four States in the SHRP western region to test the effectiveness of various joint seal materials and methods used in new and existing concrete pavements. Though initially monitored for performance under the SHRP Long-Term Pavement Performance (LTPP) program, the joint seals installed at these sites were subsequently evaluated under the Federal Highway Administration (FHWA) Long-Term Monitoring (LTM) of Pavement Maintenance Materials Test Sites project. The primary objectives of the SPS-4 supplemental joint seal experiment were as follows:

- Determine the sealant material—joint configuration combinations that perform best in newly constructed pavements.
- Determine the properties of sealants that relate best to long-term performance.

#### Scope

This report describes all aspects of the SPS-4 supplemental joint seal experiment, beginning with a discussion in chapter 1 of the materials and methods used, as well as descriptions of the selected test sites. Details of the installation of materials at each site are described in chapter 2, including site layout efforts, joint preparation and sealant placement procedures, productivity, and other observations. Included in chapter 3 are descriptions of the laboratory tests performed on some of the sealant materials and a discussion of the results of those tests. Summaries of the field performance data collected over the course of the experiment are provided in chapter 4 and an in-

depth discussion of the analyses conducted on the performance data and the corresponding results is given in chapter 5. Lastly, chapter 6 presents an overall summary of the findings and recommendations of the study.

#### **Project Overview**

Between March 1991 and October 1992, a total of 106 test sections (including 14 unsealed sections) were installed at 5 different test sites located in Utah and Arizona. An additional 19 test sections (including 2 unsealed sections) were installed at a sixth test site in Colorado in November 1995, bringing the total number of test sections to 125. The six SPS-4 supplemental joint seal test sites, and the climatic zones in which they lie, are listed below and are illustrated in figure 1.

| • U.S. 60—Mesa, Arizona                                          | Dry-nonfreeze region |
|------------------------------------------------------------------|----------------------|
| <ul> <li>U.S. 287—Campo, Colorado</li> </ul>                     | Dry-freeze region    |
| • I-80—Wells, Nevada                                             | Dry-freeze region    |
| • I-15—Tremonton, Utah                                           | Dry-freeze region    |
| <ul> <li>UT 154 (Bangerter Road)—Salt Lake City, Utah</li> </ul> | Dry-freeze region    |
| • U.S. 40—Heber City, Utah                                       | Dry-freeze region    |



Figure 1. Locations of SPS-4 supplemental joint seal test sites.

With the exception of the Campo site, each site was located on moderate- to high-volume highway facilities consisting of four or six lanes in two directions. The Campo site was located on a two-lane highway having low traffic volume. Test sections at each site consisted of experimental seals placed in transverse contraction joints. However, at the Mesa and Wells sites, several test sections included experimental longitudinal joint seals in addition to the transverse contraction joint seals.

#### Sealant Materials

Overall, 21 different sealants were placed at the 6 test site locations. The majority of these sealants were silicone; however, several hot-applied sealants and preformed compression seals were also installed. Silicone sealants are defined as one-part polymer materials that, upon chemical curing, form a continuous silicone-oxygen-silicone network that is highly elastic and highly insensitive to environmental effects (e.g., temperature changes, ultraviolet light, hardening over time) (Smith et al., 1991). First-generation silicones were relatively viscous and had to be tooled into place within joints. These types of silicone are referred to as standard, non-sag, or non-self-leveling silicones. In recent years, more fluid-like formulations of silicone were developed that do not require tooling into place. These types of silicones are referred to as self-leveling silicones. The silicone sealants used in the SPS-4 supplemental joint seal test sections are as follows:

| • Crafco 902                               | Non-self-leveling |
|--------------------------------------------|-------------------|
| • Crafco RoadSaver (RS) 903-SL             | Self-leveling     |
| Dow Corning 888                            | Non-self-leveling |
| Dow Corning 888-SL                         | Self-leveling     |
| Dow Corning 890-SL                         | Self-leveling     |
| <ul> <li>Mobay Baysilone 960</li> </ul>    | Non-self-leveling |
| <ul> <li>Mobay Baysilone 960-SL</li> </ul> | Self-leveling     |
|                                            |                   |

Hot-applied sealants are asphalt- or tar-based sealants that become soft upon heating and harden upon cooling, usually without a change in chemical composition (Smith et al., 1991). Most hot-applied sealants are asphalt-based (derived from the distillation of crude oil) and include rubber-, polymer-, or fiber-modifiers to impart desirable elastic and tensile strength properties. Tar-based sealants (derived from the destructive distillation of coal) are largely resistant to fuel spillage and are usually modified with rubbers or polymers. In this experiment, four hot-applied sealants were used in Arizona and the three Utah locations. These sealants are as follows:

| • Crafco RS 221             | ASTM D 3405        |
|-----------------------------|--------------------|
| • Crafco SuperSeal (SS) 444 | ASTM D 3406        |
| • Koch 9005                 | <b>ASTM D 3405</b> |
| • Koch 9012                 | <b>ASTM D 3406</b> |

Each test site contained at least one test section with neoprene compression seals. These seals are premolded synthetic materials that are inserted (often with the aid of a lubricant/adhesive) into joints in a state of compression. They are designed to maintain contact pressure with the joint

faces and therefore are not subject to adhesion failures. The neoprene materials used in the SPS-4 supplemental joint seal experiment are as follows:

- D.S. Brown E-437H
- D.S. Brown V-687
- D.S. Brown V-812
- Kold Seal Neo Loop
- Esco PV 687
- Watson Bowman 687
- Watson Bowman 812

In addition to the above sealant products, a self-leveling polysulfide sealant (Koch 9050-SL), a polyethylene sealant (product name unknown), and a proprietary sealant (named after Mike Roshek of the Utah Department of Transportation [DOT]) were installed.

#### Joint Preparation Methods

Because of the varying interests and practices of each participating State highway, the sealant materials were installed using many different joint preparation methods. For instance, seven different combinations of joint configuration/construction were used throughout the experiment, as described below and illustrated in figure 2.

- Configuration A—Formed using a standard riding saw, the joint width of this configuration was nominally 3 mm and the depth was nominally one-third or one-fourth the slab thickness. This configuration was used only with some of the silicone sealants.
- Configuration B—The nominal joint width of 6 mm for this configuration was also formed using a standard riding saw. Both silicone and neoprene compression seals were placed in this configuration. For silicone sealants, the minimum depth was 38 mm to accommodate the backer rod, sealant, and sealant recessment. Less depth was needed for neoprene compression seals; however, a depth of 38 mm was still typically used.
- Configurations C and G—Both of these 9-mm-wide by 38-mm-deep configurations were created using a standard riding saw. However, to investigate the possible reduction of sliver spalls at one site, configuration G included beveling of the upper 3 mm of each joint edge at a 45-degree angle. Only 10 joints (sealed with a non-self-leveling silicone) were fashioned in this configuration, as it was determined that the sawing/beveling process caused excessive raveling and resulted in aesthetically displeasing joint edges. All sealant types, except polyethylene, were installed in configuration C.
- Configuration D—In this configuration, nominal joint dimensions of 13 mm wide and 41 mm deep were created using a standard riding saw. Only one sealant type, a neoprene compression seal, was installed in this joint configuration.

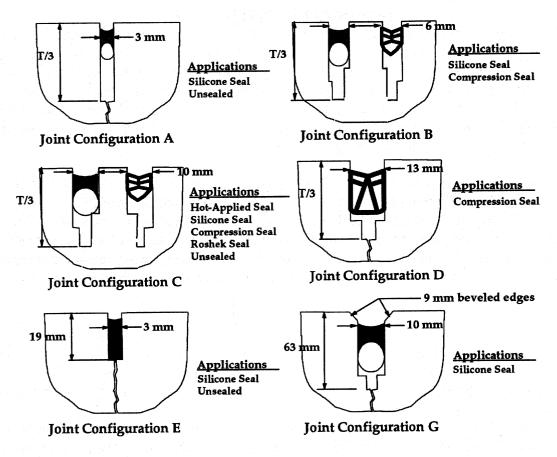



Figure 2. Joint configurations for SPS-4 supplemental joint seal test sites.

- Configuration E—The joint width of this configuration was the same as that of configuration A (nominally 3 mm deep). However, the joints were created using the Soff-Cut sawing method, whereby joints are sawed shallower (typically 19 mm) and much sooner than conventional sawcutting.
- Configuration F—The dimensions of this configuration were not known, since the test site in which it was used (Wells) was located on a pavement originally constructed and sealed with polyethylene long before the pavement was made into an SPS-4 test site. This configuration was designated as an "undisturbed" joint configuration.

Another aspect of joint preparation was the cleaning method used to ensure clean joint sidewalls for proper adherence by the experimental seals. Though the same cleaning method was essentially used for each sealant at a given site, the methods varied somewhat from site to site. For instance, at the Mesa site, each joint was sandblasted, waterblasted, and airblasted, whereas at the Wells site, each joint was sandblasted and airblasted. At the Tremonton site, each joint was waterblasted and airblasted, whereas most joints at the Salt Lake City site were only airblasted. Though the performance analyses described later in this report are confined to individual test sites, this information about joint cleaning methods was deemed noteworthy, so as to prevent the development of incorrect, broad-based conclusions about seal performance.

The use of 21 different sealant materials and 7 different joint configurations resulted in a total of 29 distinct joint seal treatment types (i.e., material—configuration combinations). Table 1 summarizes the joint seal treatment types applied at each test site and shows the number of test sections of each treatment type. It can be seen that several of the treatments were unique to only one site. However, overlooking the different joint cleaning methods used at the various sites, it can also be seen that some treatment types (e.g., Crafco 903-SL in configuration C, Dow 888-SL in configuration C) were used at multiple test sites.

The experimental layout varied greatly from site to site. Each test site contained from 17 to 24 test sections. Either two or four of these sections were designated specifically as SHRP test sections; the remaining sections were designated as State supplemental sections. With the exception of the Wells test sections, which contained only 15 transverse joints, each section contained between 25 and 48 transverse joints in which the experimental joint seals were placed. Appendix A provides the physical layout of the various material—configuration combinations at each test site.

#### **Test Site Characteristics**

#### U.S. 60, Mesa, Arizona

This test site is located in the dry-nonfreeze climatic region of the United States along a 3.5-km stretch of highway more commonly known as Superstition Freeway. The test sections are located in the eastbound travel lanes, and are bounded by Power Road and Ellsworth Road, as illustrated in figure 3. The highway consists of six lanes in two directions, with each lane approximately 3.7 m wide. The pavement was constructed in February 1991 and consists of a 330-mm-thick JPC pavement, placed on 102 mm of compacted aggregate base on a compacted subgrade. The joint spacing is staggered at intervals of 4.0, 4.6, 5.2, and 4.6 m. Experimental joint seals were installed shortly after pavement completion in February 1991. The pavement was designed for 2.9 million 80-kN equivalent single-axle loads (ESALs) and a 20-year design life. Average annual precipitation at this site is about 178 mm, and the average monthly temperatures range from about 10 to 33°C (U.S. Dept. of Commerce, 1983).

#### U.S. 287, Campo, Colorado

This test site is located in the northbound lane of U.S. 287 in Baca County, 4.8 km south of Campo, in southeastern Colorado. The specific location of the test site is shown in figure 4. The test site is approximately 2.1 km long, and the two-lane highway on which it sits has 3.7-m-lanes and 3.0-m-wide paved shoulders. Constructed in October and November of 1995, the pavement was designed to carry 10 million 80-kN ESALs for its 30-year design period. The pavement structure consists of 254 mm of portland cement concrete (PCC) placed on 610 mm of unbound

Table 1. Summary of materials and procedures used for joint seal installation.

|                       | Joint                          | Number of Test Sections Installed at Test Site |                         |                     |                      |                                   |                                |  |
|-----------------------|--------------------------------|------------------------------------------------|-------------------------|---------------------|----------------------|-----------------------------------|--------------------------------|--|
| Sealant<br>Material   | Configuration/<br>Construction | Mesa, AZ<br>(U.S. 60)                          | Campo, CO<br>(U.S. 287) | Wells, NV<br>(I-80) | Tremonton, UT (I-15) | Salt Lake<br>City, UT<br>(UT 154) | Heber<br>City, UT<br>(U.S. 40) |  |
| Crafco RS 221         | С                              | 2                                              |                         |                     |                      | 2                                 |                                |  |
| Crafco SS 444         | С                              | 2                                              |                         |                     |                      |                                   |                                |  |
| Crafco 902            | Α                              |                                                | 2                       |                     |                      |                                   |                                |  |
|                       | В                              |                                                | 2                       |                     |                      |                                   |                                |  |
|                       | С                              |                                                | 3                       | 2                   |                      |                                   |                                |  |
|                       | G                              |                                                | 2                       |                     |                      |                                   |                                |  |
| Crafco 903-SL         | Α                              |                                                | 2                       |                     |                      |                                   |                                |  |
|                       | В                              |                                                | 2                       |                     |                      |                                   |                                |  |
|                       | С                              | 2                                              | 2                       | 2                   |                      |                                   |                                |  |
| Dow 888               | С                              | 2                                              |                         | 3                   |                      | 2                                 | 2                              |  |
| Dow 888-SL            | С                              | 2                                              |                         | 2                   | 2                    | 2                                 | 2                              |  |
| Dow 890-SL            | Α                              | 2                                              |                         |                     | 2                    | 2                                 | 2                              |  |
|                       | В                              | 2                                              |                         |                     |                      |                                   |                                |  |
|                       | С                              | 2                                              |                         | 2                   |                      |                                   |                                |  |
|                       | Е                              |                                                |                         |                     | 1                    | 2                                 | 2                              |  |
| DS Brown E-437H       | В                              |                                                | 1                       |                     |                      | 2                                 | 2                              |  |
| DS Brown V-687        | С                              | 2                                              | 1                       |                     |                      | 2                                 | 2                              |  |
| DS Brown V-812        | D                              |                                                |                         | 2                   |                      |                                   |                                |  |
| Koch 9005             | C                              |                                                |                         |                     | 2                    |                                   | 2                              |  |
| Koch 9012             | C                              |                                                |                         |                     | 2                    | 2                                 | 2                              |  |
| Koch 9050-SL          | C                              |                                                |                         |                     |                      | 2                                 | 2                              |  |
| Kold Seal Neo Loop    | В                              |                                                |                         |                     | 2                    |                                   |                                |  |
| Mobay 960             | C                              |                                                |                         | 2                   | 4                    |                                   |                                |  |
| Mobay 960-SL          | C                              | 2                                              |                         |                     |                      |                                   |                                |  |
| Roshek                | С                              |                                                |                         |                     | 1                    |                                   |                                |  |
| Esco PV 687           | С                              |                                                |                         |                     | 2                    |                                   |                                |  |
| Watson Bowman 687     | C                              | 1                                              |                         |                     |                      |                                   |                                |  |
| Watson Bowman 812     | С                              | 1                                              |                         |                     |                      |                                   |                                |  |
| Unsealed              | Α                              | 2                                              | 2                       |                     | 2                    | 2                                 | 2                              |  |
|                       | C                              |                                                |                         | 1                   |                      |                                   |                                |  |
|                       | Е                              |                                                |                         |                     | 1                    | 2                                 | 2                              |  |
| Polyethylene          | B                              |                                                |                         | 1                   |                      |                                   |                                |  |
| Total Treatment Types | (excl. unsealed)               | 12                                             | 9                       | 8                   | 9                    | 9                                 | 9                              |  |
| Total Test Se         |                                | 24                                             | 19                      | 17                  | 21                   | 22                                | 22                             |  |

#### Joint Configuration/Construction

- A. Standard saw, 3-mm joint width.
- B. Standard saw, 6-mm joint width.
- C. Standard saw, 9-mm joint width.
- D. Standard saw, 13-mm joint width.
- E. Soff-Cut saw, 3-mm joint width.
- F. Undisturbed.
- G. Standard saw, 9-mm beveled joint.

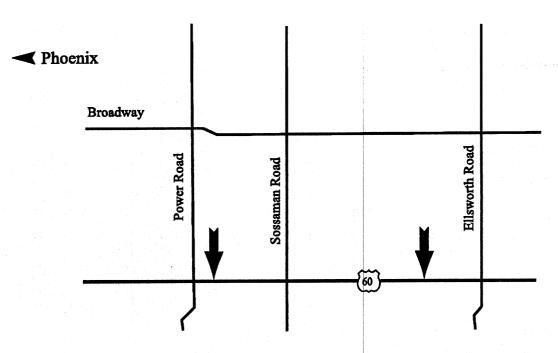



Figure 3. Mesa, Arizona SPS-4 supplemental joint seal test site location.

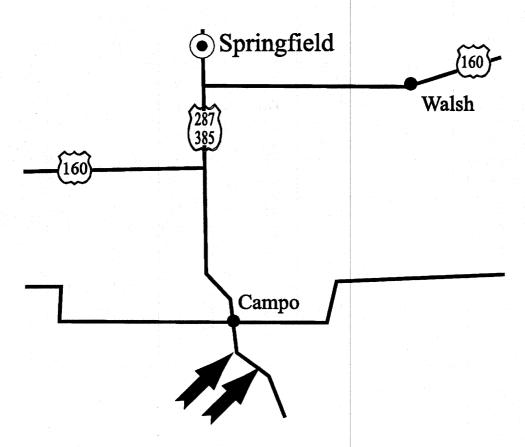



Figure 4. Campo, Colorado SPS-4 supplemental joint seal test site location.

R-70 select soil (compacted to 95 percent of maximum dry density) and a sandy, drainable subgrade. The transverse joints are doweled and unskewed, with an even joint spacing of 4.6 m. Experimental seals were installed shortly after completion of paving in November 1995. The average annual precipitation at this dry-freeze site is about 377 mm, and the average monthly temperatures range from about 0 to 25°C (U.S. Dept. of Commerce, 1983).

#### I-80, Wells, Nevada

This dry-freeze test site is located in Elko County, west of Wells, in the westbound and eastbound driving lanes of I-80 in northeastern Nevada. Figure 5 shows the specific location of the test site. Though the pavement was originally built in March 1980, the experimental joint seals were installed in August 1991. The pavement was constructed using 246 mm of JPC placed on a 152-mm cement-treated base, 112 mm of aggregate subbase, and a silty-sand subgrade. The transverse joints were skewed, doweled, and spaced in a random pattern of 4.3, 4.0, 5.8, and 5.8 m. Sealant was placed in the joints at the time of original construction, but was removed as part of the 1991 experimental seal installation. The length of the test site is approximately 1.0 km. The interstate on which it lies consists of two 3.7-m-wide lanes in each direction, with 3.0-m- and 1.2-m-wide PCC outside and inside shoulders, respectively. The average annual precipitation at this site is about 305 mm, and the average monthly temperature ranges from about -5 to 22°C (U.S. Dept. of Commerce, 1983).

#### I-15, Tremonton, Utah

Located approximately 8 km north of the Riverside/Logan exit, this test site is situated in the northbound and southbound driving lanes of the four-lane I-15 in north central Utah. Figure 6 shows the specific location of this dry-freeze site. The pavement was constructed in October 1990 with 254 mm of JPC placed on a 102-mm lean concrete base and a 102-mm crushed gravel subbase. Additional support consisted of 457 mm of well-graded gravel with sand placed on a subgrade of well-graded gravel with cobbles. Transverse joints were spaced at repeated intervals of 3.0, 4.6, 3.4, and 4.3 m, and were made skewed and undoweled. The experimental joint seals were installed a few weeks after pavement construction. The travel lanes of the facility are 3.7 m wide, and the PCC outside and inside shoulders are 2.4 m and 0.9 m, respectively. The average annual precipitation at the Tremonton site is approximately 406 mm, and the average monthly temperatures range from about -7 to 23°C (U.S. Dept. of Commerce, 1983).

#### UT 154, Salt Lake City, Utah

This dry-freeze test site is located in the northbound and southbound lanes of Utah Route 154 (Bangerter Road) in the southern part of Salt Lake City. Specifically, it is located between 3500 South Street and 4100 South Street, as illustrated in figure 7. The test site pavement was constructed in the fall of 1991 and spring of 1992. Shortly after construction, the experimental joint sealants were installed. The pavement was constructed with 254 mm of JPC placed on a 102-mm lean concrete base, 102 mm of crushed gravel subbase, and 305 mm of poorly graded

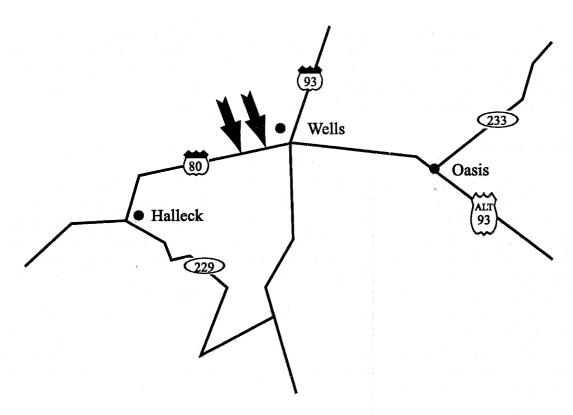



Figure 5. Wells, Nevada SPS-4 supplemental joint seal test site location.

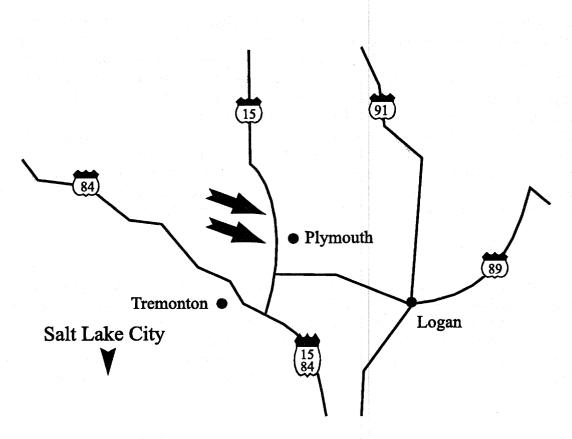



Figure 6. Tremonton, Utah SPS-4 supplemental joint seal test site location.

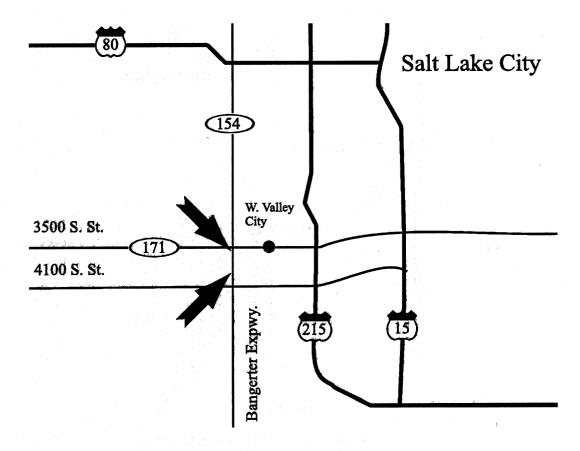



Figure 7. Salt Lake City, Utah SPS-4 supplemental joint seal test site location.

gravel. A 305-mm geo-grid layer of clean, free-draining gravel and filter fabric was placed beneath the poorly graded gravel, and the entire structure rests on a sandy clay subgrade. Transverse joints were constructed at staggered intervals of 3.0, 4.6, 3.4, and 4.3 m. These joints were skewed, but undoweled. The highway on which the test site lies consists of six lanes (in two directions), with each lane approximately 3.7 m wide. The curb and gutter flank the outside lanes, whereas a 3.7-m-wide PCC shoulder adjoins the inside lanes. The average annual precipitation of this test site is approximately 610 mm, and the average monthly temperatures range from about -3 to 24°C (U.S. Dept. of Commerce, 1983).

#### U.S. 40, Heber City, Utah

This test site is located in the eastbound and westbound lanes of U.S. 40, approximately 50 km southeast of Salt Lake City, in north central Utah. As seen in figure 8, the site is located between mileposts 5 and 6.5 on U.S. 40. Though this four-lane highway extends north and south at the location of the test site, it is technically an east-west route. The pavement was constructed in September 1991, and the experimental joint sealants were installed shortly thereafter. The travel lanes were constructed with PCC to a thickness of 254 mm. The pavement base in the westbound lanes consisted of an unknown thickness of asphalt concrete (AC), whereas 102 mm of lean concrete were used for the base in the eastbound lanes. The subbase in both directions

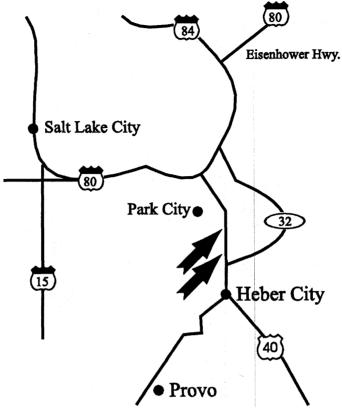



Figure 8. Heber City, Utah SPS-4 supplemental joint seal test site location.

consists of 102 mm of crushed gravel placed on 457 mm of silty, sandy gravel and a poorly graded gravel subgrade. Skewed, undoweled transverse joints were constructed at staggered intervals of 3.0, 4.6, 3.4, and 4.3 m. The pavement consists of two 3.7-m-wide lanes in each direction, with 2.4-m- and 1.2-m-wide PCC outside and inside shoulders, respectively. Average annual precipitation at the Heber City test site is approximately 610 mm, and the average monthly temperatures range from -6 to 22°C (U.S. Dept. of Commerce, 1983).

#### **CHAPTER 2. TEST SITE INSTALLATIONS**

As discussed in chapter 1, five of the six SPS-4 supplemental joint seal test sites involved the installation of experimental sealants in newly constructed PCC pavements, thereby classifying them as joint seal sites. Since the pavement at the Wells site was originally built in 1980 (joints were initially sealed at that time), but the experimental sealants were not installed until 1991, this site is classified as a joint reseal site.

In the case of the five sites containing new seals, the pavement construction contracts were originally written to include the experimental joint seal installation work or the necessary change orders were developed to allow the experimental installations to occur. At each of these five sites, the experimental installations followed closely behind the pavement construction process (usually within a few weeks), as indicated in table 2. At all six test sites, the sealant installations were performed by contractors selected by the sponsoring State highway agency (SHA). These contractors are also listed in table 2.

#### Test Site Planning, Coordination, and Layouts

As primary beneficiaries of the SPS-4 test results, each sponsoring State highway agency had control over the design and layout of the test sites installed in their State. The selections of material products and procedures, along with the planning of joint seal treatment locations and boundaries, were generally made by key researchers, engineers, and administrators within the sponsoring DOTs.

Table 2. Test site construction and experimental joint seal installation information.

| Test Site                 | Pavement Construction and<br>Primary Sawing Dates | Secondary Sawing and<br>Experimental Sealant<br>Installation Dates | Sponsoring<br>Highway<br>Agency | Experimental<br>Sealing Contractor     |
|---------------------------|---------------------------------------------------|--------------------------------------------------------------------|---------------------------------|----------------------------------------|
| U.S. 60—Mesa, AZ          | 2/13/91 - 2/15/91                                 | 3/18/91 - 3/31/91                                                  | Arizona DOT                     | Multiple Concrete<br>Enterprises, Inc. |
| U.S. 287—Campo, CO        | 10/24/95 - 11/15/95                               | 11/15/95 - 11/19/95                                                | Colorado DOT                    | Castle Rock<br>Construction, Inc.      |
| I-80—Wells, NV            | 3/80                                              | 8/14/91 - 8/22/91                                                  | Nevada DOT                      | Diversified Concrete<br>Cutters, Inc.  |
| I-15—Tremonton, UT        | 10/9/92 - 10/23/92                                | 10/23/92 - 10/26/92                                                | Utah DOT                        | Concrete Sawing and Sealing, Inc.      |
| UT 154—Salt Lake City, UT | Fall 1991 - Spring 1992                           | 5/19/92 - 5/27/92 (SB)<br>6/29/92 - 8/14/92 (NB)                   | Utah DOT                        | A-Core, Inc.                           |
| U.S. 40—Heber City, UT    | 6/26/91 - 7/8/91 (EB)<br>9/16/91 - 9/23/91 (WB)   | 7/8/91 - 7/11/91 (EB)<br>9/23/91 - 10/1/91 (WB)                    | Utah DOT                        | Multiple Concrete<br>Enterprises, Inc. |

The proposed experimental joint seal treatments and testing sequences for a given site were usually detailed in an experimental plan. Some changes were made to the original experimental plans developed by each sponsoring agency, as a result of problems incurred with the installation of the materials (e.g., running out of sealant, joint preparation problems, sealant preparation problems). These changes were documented in each of the six SPS-4 supplemental joint seal construction reports (Meier, 1992; Wienrank and Evans, 1995a, 1995b, 1995c, 1995d; Ambroz and Evans, 1996).

Figures 9 through 14 show the final layouts of each test site. As can be seen in these figures, each test section was assigned a test section number, corresponding to its location in the field testing sequence, and a six-digit SHRP identification (ID) number, indicating the State in which the test section is located and the sealant material and procedure used in the section. In most cases, two replicate test sections of each material—procedure combination were established, either in opposite directions or in the same direction, but spaced apart from each other.

The size of test sections varied, both in terms of length and number of transverse joints. Sections ranged between 56 and 183 m long and were comprised of between 15 and 48 transverse joints. At the Arizona and Nevada sites, the same sealant placed in the transverse joints of a given test section was typically used to seal the longitudinal joints within that section. At the other four test sites, one sealant was typically used throughout the entire site to seal the longitudinal joints.

All test sections were marked according to standard SHRP-LTPP guidelines. Permanent signing was erected to indicate the boundaries of the entire test site, as well as the beginning and end of each individual test section. Each test section was also marked with two white paint stripes extending across the test lane. These stripes were located at the beginning and end of each section. In most cases, the six-digit SHRP ID number was painted at the beginning of the test section, near the outside shoulder.

#### **Installation Processes**

In general, the experimental sealant installation process at each site consisted of five steps, following the completion of concrete paving operations. These steps were as follows:

- 1. Primary/initial joint sawing.
- 2. Secondary/reservoir joint sawing.
- 3. Joint cleaning.
- 4. Backer material placement.
- 5. Sealant application.

Since the Wells site was installed on an in-service concrete pavement with initially sealed joints, the first step in this process was not needed and the second step served the combined purpose of removing old sealant and widening the joint to the specified test width. Additionally, the fourth step was not required for use with neoprene compression seals, nor was it used in the 3-mm Soff-Cut joints that were sealed with Dow 890-SL silicone at the Salt Lake City and Heber City sites.

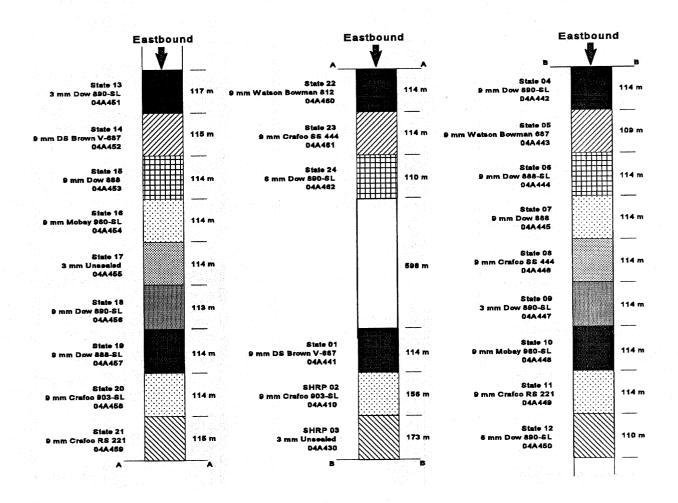



Figure 9. Mesa, Arizona test site layout.

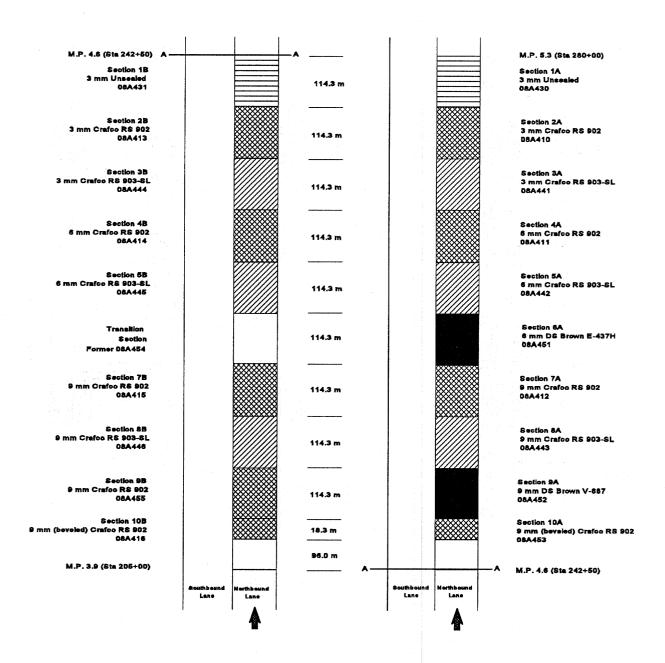



Figure 10. Campo, Colorado test site layout.

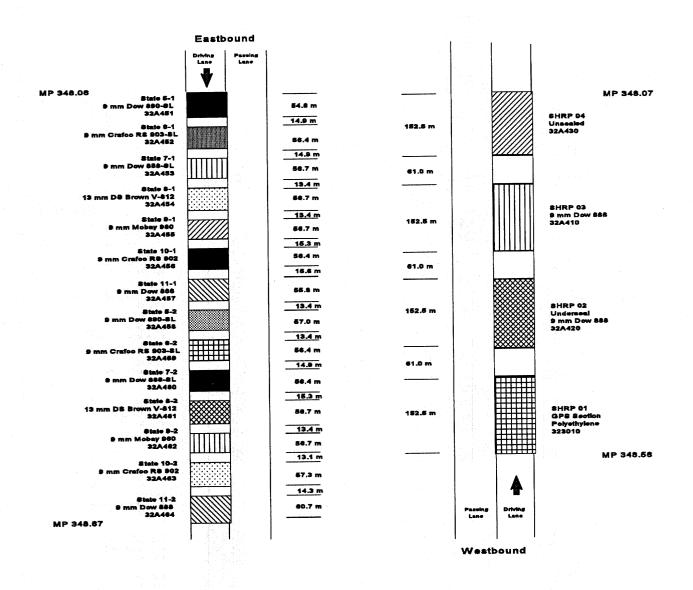



Figure 11. Wells, Nevada test site layout.

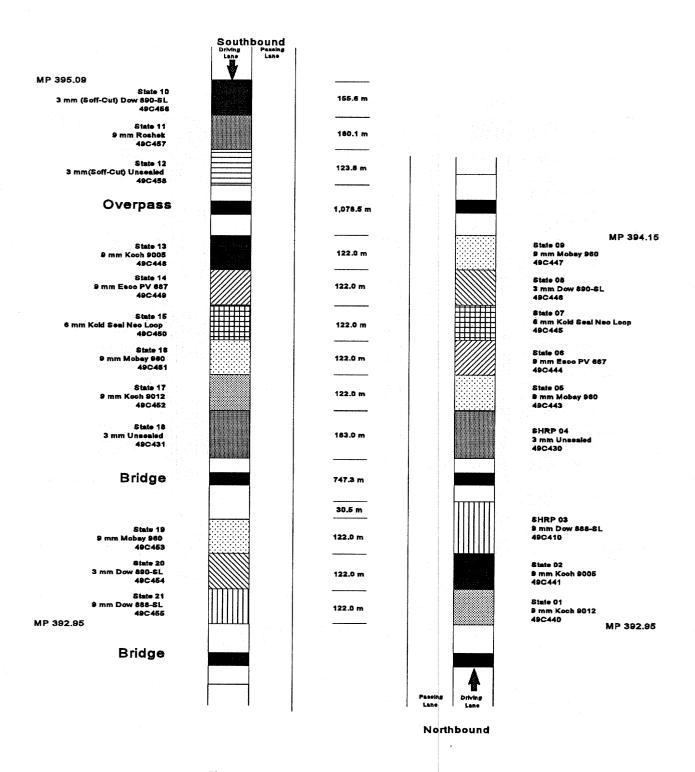



Figure 12. Tremonton, Utah test site layout.

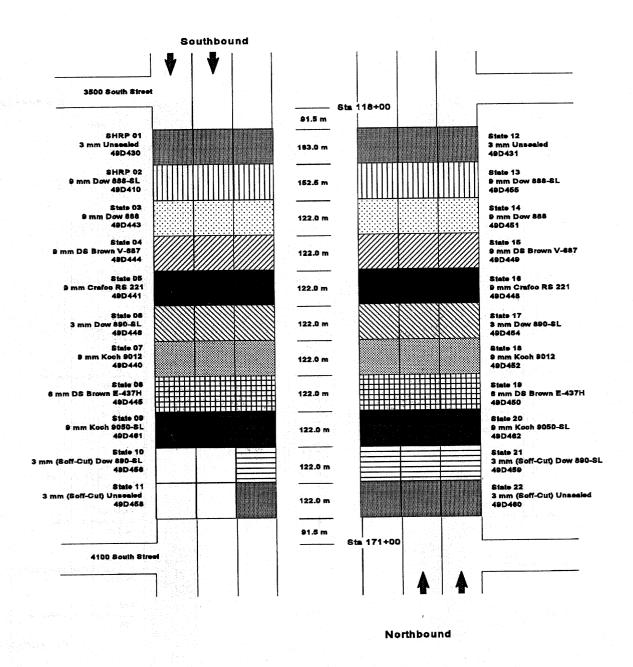



Figure 13. Salt Lake City, Utah test site layout.

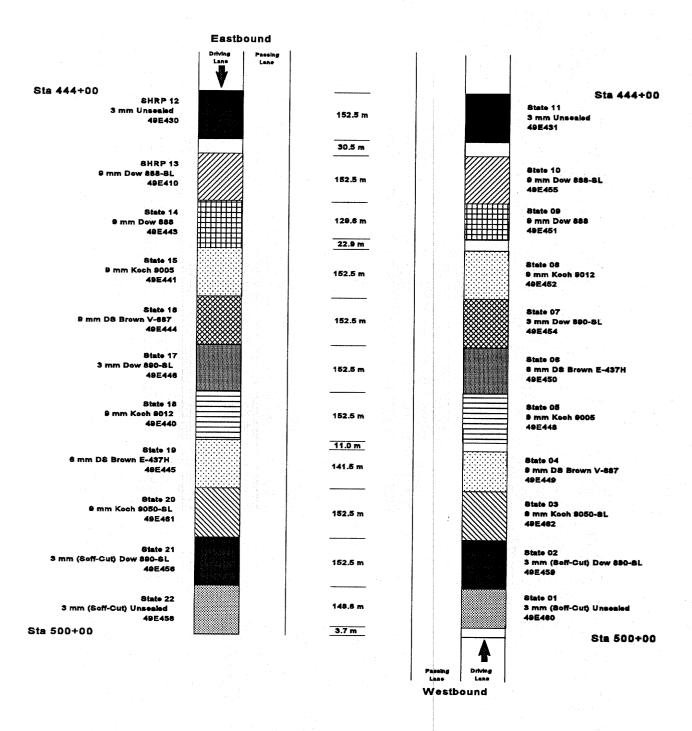



Figure 14. Heber City, Utah test site layout.

#### **Primary Joint Sawing**

In most cases, primary joint sawing was accomplished using a water-cooled riding saw with a 305- to 356-mm-diameter single-saw blade. The width of the primary sawcut was approximately 3 mm, while the depth was typically maintained to either one-third or one-fourth the thickness of the concrete slabs. This step was performed as soon as the concrete had cured to the point that extensive raveling would not occur. Figure 15 illustrates the primary sawcutting operation, as performed at the Wells site.

Primary joint sawing using the Soff-Cut procedure differed slightly from conventional means. Because the Soff-Cut pavement saw is lighter than conventional saws, sawing operations can be performed sooner after the paving process (essentially as soon as the pavement can support the weight of the saw) and consequently require a shallower cutting depth. As a result of the shallower cut, the productivity of the operation is increased. The Soff-Cut joints created at the Tremonton, Salt Lake City, and Heber City sites were typically between 19 and 25 mm deep. These cuts were substantially shallower than the 85-mm-deep cuts created using conventional saws.

#### Secondary Joint Sawing

Several experimental joints required a secondary sawcut in order to produce the specified sealant shape factor. In most cases, these cuts were made with one pass of a riding saw having water-cooled, 305- or 356-mm-diameter blades. For wider cuts, double and triple blades were

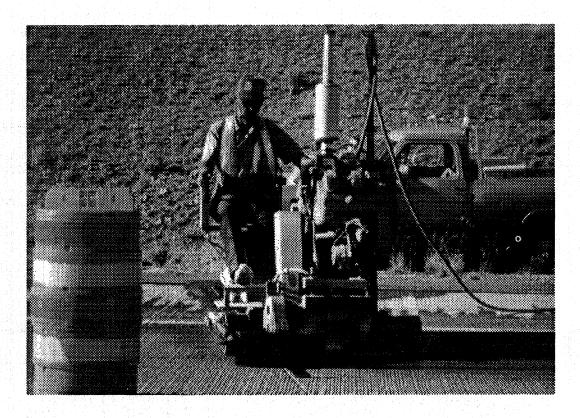



Figure 15. Primary joint sawing operation at Wells, Nevada test site.

used. Secondary cuts were not as deep as primary cuts, and they varied according to the sealant and configuration used. Some spalling and raveling of pavement joint edges were observed during the secondary sawcutting operations, particularly in the Crafco RS 902 beveled-joint sections installed at the Campo site.

#### Joint Cleaning

Different methods of joint cleaning were used at each test site. The methods involved one or a combination of the following four techniques:

- High-pressure airblasting.
- Waterwashing.
- High-pressure waterblasting.
- Sandblasting.

Joints that were to be left unsealed were not cleaned at all. Table 3 lists, in sequence, the techniques used to clean the joints at each site. Figure 16 shows the sandblasting of a joint located at the Wells test site.

Table 3. Methods used for cleaning each site.

| Test Site               | Step 1                                                                          | Step 2                                                          | Step 3                  | Step 4              | Step 5     | Step 6   |
|-------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------|---------------------|------------|----------|
| Mesa, Arizona           | 827-kPa<br>Airblast                                                             | Dry saw                                                         | Sandblast<br>(2 passes) | Airblast            | Waterblast | Airblast |
| Campo,<br>Colorado      | Waterwash                                                                       | Air dry<br>(30 min)                                             | 621-kPa<br>Sandblast    | 621-kPa<br>Airblast |            |          |
| Wells, Nevada           | Sandblast<br>(2 passes)                                                         | 862-kPa<br>Airblast                                             |                         |                     |            |          |
| Tremonton,<br>Utah      | 6,895-kPa<br>Waterblast                                                         | Waterwash                                                       | Air dry                 | 690-kPa<br>Airblast |            |          |
| Salt Lake City,<br>Utah | 19,306-kPa<br>Waterblast<br>(2 compression seal<br>sections only)               | 586- to<br>1,034-kPa<br>Airblast                                |                         |                     |            |          |
| Heber City, Utah        | 552-kPa Waterblast<br>(WB sections)<br>6,895-kPa<br>Waterblast<br>(EB sections) | 690-kPa Airblast (WB sections) 3,448-kPa Airblast (EB sections) |                         |                     |            |          |



Figure 16. Sandblasting operation at Wells, Nevada test site.

#### **Backer Material Placement**

Backer rods were used to prevent field-molded sealants from flowing down into the joints and to provide a more uniform sealant depth and shape factor. Typically, heat-resistant foam backer rod materials were used in conjunction with the hot-applied sealants, whereas non-heat-resistant materials were used with the silicone and polysulfide sealants. For 9-mm-wide joints, 13-mm-diameter backer rods were used; for 6-mm-wide joints, 8- and 9-mm-diameter rods were used; and for 3-mm-wide joints, 6-mm-diameter rods were used. All backer rods were installed after the final joint cleaning and just prior to the actual application of the sealant. Figure 17 shows backer rod being installed with a backer rod tool at the Campo test site. The backer rod tool facilitates placement and provides uniform depth of insertion.

#### Sealant Application

In general, experimental joints were sealed within 3 to 4 hours after final cleaning. However, joints in some of the test sections at Salt Lake City and Tremonton were not sealed until 24 to 48 hours after cleaning. Visual observations of joint cleanliness and dryness by SHRP contractor field representatives indicated that joints at the Wells and Tremonton sites were dry and clean, whereas joints at the Campo, Heber City, and Salt Lake City sites were mostly dry, to dry and mostly clean, to clean. Visual observations of joint cleanliness and dryness at the Mesa site were not reported.



Figure 17. Backer rod placement at Campo, Colorado test site.

#### **Hot-Applied Sealants**

Experimental hot-applied sealants were heated in asphalt kettles to temperatures ranging from 123 to 210°C. To prevent burning of sealant material and to promote uniform heating, each hot-applied sealant was mechanically stirred with agitator paddles located within the heating vats of the asphalt kettles. Once the recommended melting temperature of a particular sealant was reached, the sealant was pumped through a hose-and-wand unit into the bottom of the prepared joints, as illustrated in figure 18.

Overall, very little difficulty was experienced with the installation of hot-applied sealants. The only notable problems included extended heating of Crafco SS 444 at the Mesa site (Meier et al., 1992), some difficulties maintaining proper temperature of Koch 9012 at the Tremonton site (Wienrank and Evans, 1995b), and contamination of Koch 9012 at the Salt Lake City site (Wienrank and Evans, 1995c).

#### Silicone Sealants

Experimental silicone sealants were placed into joints under pressure using a joint sealant pump (typically 208 L) mounted on either a flatbed truck or a trailer (figure 19). Application pressures ranged from 240 to 690 kPa. Regular, or non-self-leveling, silicones were tooled to ensure good contact with joint surfaces, to control sealant depth, and to produce the required recessment below the pavement surface. At most sites, tooling was accomplished using a piece of flexible tubing attached to the end of a broom handle.



Figure 18. Hot-applied sealant installation at Heber City, Utah test site.

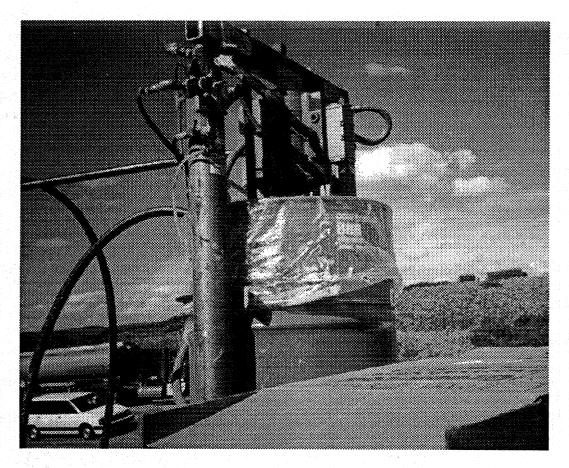



Figure 19. Silicone sealant pumping apparatus used at Heber City, Utah test site.

The only reported installation problem associated with the non-self-leveling silicones was the buildup of material along the tops of joint walls at the Campo site. It was determined that the tool used to form a concave surface in the silicones was not sufficiently wide or flexible enough to force the sealant against both sides of the joint.

Because of their fluid-like natures, self-leveling silicones required no tooling after application. These sealants were simply dispensed into the joint bottom and allowed to level under gravity to the specified recessment below the pavement surface.

A few difficulties were encountered with the self-leveling silicones. At the Heber City and Salt Lake City sites, sealing crews had trouble applying sealant into 3-mm-wide joints. To overcome this problem, crews ground down the nozzle located on the end of the application wand so that it would fit into the narrow joints. A similar problem encountered at the Mesa site was resolved by using a smaller modified nozzle taken from an asphalt kettle unit.

At the Campo site, self-leveling silicones were routinely placed too near the pavement surface, exposing large portions of the material to direct contact by traffic tires. The narrow joint openings (3 mm) where this occurred were believed to be a factor.

#### Neoprene Compression Seals

The preformed compression seals used in the SPS-4 test sites were supplied by manufacturers in continuous rolls. Most of the seals were installed mechanically using a special installation machine, such as the D.S. Brown Auto Installer shown in figure 20. These machines compressed the seal, coated the seal with a lubricant adhesive, and inserted it into the pavement joint. Typically, the first and last few millimeters of these seals along each joint had to be installed by hand.

Generally speaking, the compression seal installation machines worked well for 9- and 13-mm-wide joints. However, there was much greater difficulty with the installation of compression seals in 6-mm-wide joints. Nearly half of the seals destined for the 6-mm-wide joints at the Heber City site had to be installed by hand.

The Esco PV-687 seals at the Tremonton site were installed by hand, as shown in figure 21. In addition, because of an improperly functioning installation machine, the two compression seals selected for use at the Campo site were also installed by hand using putty knives. The result at the Campo site was several twisted and sunken seals, especially in the 6-mm-wide joints.

#### Polysulfide Sealant

The self-leveling polysulfide sealant Koch 9050-SL was installed at the Salt Lake City and Heber City test sites. Much like silicone sealant, this material was placed into joints under pressure using a joint sealant pump mounted on a flatbed truck. Although some minor problems

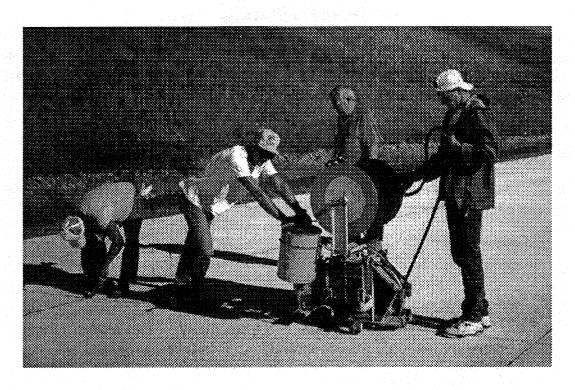



Figure 20. Mechanical installation of neoprene compression seal at Heber City, Utah test site.



Figure 21. Manual installation of neoprene compression seal at Tremonton, Utah test site.

were experienced with the pump during the installation of Koch 9050-SL at Salt Lake City, a much greater problem was experienced when rain washed some of the sealant out of the joints at this site and caused some seals to have low spots. Seals that were washed out were subsequently resealed with new polysulfide material.

#### Field Data Collection and Analysis

Installation data for each test section in each test site were collected in the field and recorded on SHRP LTPP data collection forms. Among the types of information collected were the following:

- Installation date and time.
- Test section stationing.
- Joint preparation method.
- Joint reservoir dimensions.
- Backer rod material installed.
- Depth to top of backer rod.
- Sealant material installed.
- Depth to top of sealant.

Summaries of most of this information are contained in the six SPS-4 supplement joint seal construction reports (Meier, 1992; Wienrank and Evans, 1995a, 1995b, 1995c, 1995d; Ambroz and Evans, 1996). These reports also describe the results of analyses performed to determine adherence of actual joint reservoir and seal dimensions to the experimental design dimensions. Those analysis results are summarized below.

- Secondary sawcuts—For most sections at each site, joints were sawed to an acceptable tolerance (±1.6 mm) of the specified joint width. Of the 125 test sections comprising the 6 test sites, 101 sections had the majority of joints sawed to within the specified tolerance limits. The vast majority of the 24 sections that didn't meet design specifications consisted of overly wide sawcut joints. The causes of these occurrences were not identified. However, for five sections found to be out of compliance at the Wells site, it was believed that the existing joints were about as wide as the design dimension and that the required secondary sawing (to remove the old sealant and provide a new reservoir) inevitably resulted in excessively wide joint reservoirs.
- Depth to top of backer rod—With the exception of the Campo test sections, backer rods were usually placed to the allowable limits of 13 to 19 mm below the pavement surface. All 18 sections requiring backer rods at the Mesa site and all 11 sections requiring backer rod at Tremonton had a majority of the joints installed with backer rod to within allowable limits. Moreover, 27 of the 39 backer rod sections at Wells, Salt Lake City, and Heber City had a majority of joints with the backer rod placed to acceptable depths. At the Campo site, 7 of the 12 sections requiring backer rod had a majority of the joints with backer rod placed out of tolerance. Overwhelmingly, the backer rods in these sections were placed too high.

- Depth to top of sealant—At all sites, the allowable limits for depth to the top of sealant from the pavement surface were established at 6 and 9 mm. Measurements taken in the field indicated that most sealants were placed to depths outside these limits. At the Mesa, Campo, and Salt Lake City sites, 33 of the 45 sections measured for sealant depth showed that the majority of seals were placed too high (less than 6 mm deep) in the joint, potentially exposing them to traffic. A few sections at Heber City and Tremonton were also observed to have excessively high sealants. In contrast, 7 of the 16 sections measured for sealant depth at Wells had a majority of the joints in which sealant was placed too low (in excess of 9 mm deep).
- Sealant shape factor—An important parameter in the design and construction of field-molded sealants is the sealant shape factor. The shape factor is defined as the ratio of the sealant depth to the sealant width, and it is important because different shape factors result in different levels of stress development for different sealant types during sealant extension. The shape factors that result in the lowest buildup of stresses most often provide better field performance. As examples, silicone sealants generally provide the best performance when placed in a shape factor of about 0.5, whereas hot-applied rubberized asphalt materials generally provide the best performance when placed in a shape factor around 1.0. A summary of the analysis of shape factors at each test site is provided below.
  - At Mesa, two different treatments had mean shape factors outside of the specified design tolerances (0.57 to 1.20 for 9-mm-wide joints, 0.80 to 2.00 for 6-mm-wide joints, and 1.00 to 5.00 for 3-mm-wide joints). One section of Dow 890-SL, placed in 6-mm-wide joints, had a mean shape factor of 0.61, whereas the design shape factor range for this treatment was 0.80 to 2.00. Also, the two sections of Dow 890-SL placed in 3-mm-wide joints had mean shape factors of 0.58 and 0.62. The design shape factor range for this treatment was 1.00 to 5.00. Since silicone has been shown to provide the best performance with a shape factor around 0.5, the performance of these treatments could be better than what the design shape factor would have provided.
  - At Campo, 4 of the 13 test sections measured for seal dimensions had mean shape factors outside of the specified design tolerances (0.29 to 1.60 for 9-mm-wide joints, 0.80 to 2.67 for 6-mm-wide joints, and 0.67 to 8.00 for 3-mm-wide joints). Two sections of Crafco 903-SL placed in 6-mm joints had mean shape factors of 0.77 and 0.71, whereas the design shape factor range for this treatment was 0.8 to 2.67. Also, one section of Crafco 902 placed in 6-mm joints had a mean shape factor of 0.77, slightly under the minimum tolerance of 0.8. Lastly, one section of Crafco 902 placed in 3-mm joints had a mean shape factor of 0.5, whereas the design shape factor range for this treatment was 0.67 to 8.00. Though each of these treatments were considerably thinner than what was designed, their shape factors are closer to the optimal shape factor for silicone sealants.

- At Wells, all of the 14 test sections measured for seal dimensions had mean shape factors within the specified design tolerances (0.29 to 1.60 for 9-mm-wide joints). Most of the measured mean shape factors were around 0.60, which is generally to the advantage of silicone seals. However, in some of these sections (Dow 888, Crafco 902, and Crafco 903-SL, all placed in 9-mm joints), very high standard deviations of shape factor were computed, which means that several of the seals probably had shape factors below the minimum tolerance of 0.29.
- At Tremonton, all of the seven test sections measured for seal dimensions had mean shape factors within the specified design tolerances (0.29 to 1.60). Most of the measured mean shape factors were around 1.00, which is generally very suitable for hot-applied seals, but slightly less suitable for silicone seals.
- At Salt Lake City, all but 1 of the 10 test sections measured for seal dimensions had mean shape factors within the specified design tolerances (0.29 to 1.60 for 9-mm-wide joints and 0.67 to 8.00 for 3-mm-wide joints). A section of Crafco RS 221 had a mean shape factor of 1.85, whereas the design shape factor range for this treatment was 0.29 to 1.60. The replicate section of this treatment had a mean shape factor of 1.46; however, its standard deviation of 0.37 indicates that several of the seals probably exceeded the maximum tolerance of 1.60. Generally speaking, these mean shape factors are too high for optimal performance by hot-applied rubberized asphalt sealant.

The 3-mm-wide joint design was used in two sections. The mean shape factors of the Dow 890-SL seals placed in these sections were 2.48 and 2.29, both of which were within the design shape factor limits of 0.67 to 8.00. However, these shape factors are considerably higher than the optimal shape factor of 0.5 for silicone sealants, and could result in reduced performance.

At Heber City, all of the 12 test sections measured for seal dimensions had mean shape factors within the specified design tolerances (0.29 to 1.60 for 9-mm-wide joints and 0.67 to 8.00 for 3-mm-wide joints). However, one section of Koch 9012 placed in 9-mm joints was computed as having a mean shape factor of 1.37 and a standard deviation of 0.25, which indicates that several of the seals probably had shape factors

above the maximum tolerance of 1.60.

Like the Salt Lake City site, the 3-mm-wide joint design was used in two sections. The mean shape factors of the Dow 890-SL seals placed in these sections were 1.67 and 2.13, both of which were within the design shape factor limits of 0.67 to 8.00. However, these shape factors are considerably higher than the optimal shape factor of 0.5 for silicone sealants, and could result in reduced performance.

# **Productivity and Cost Data**

Because very few records were kept regarding the time, material, labor, and equipment required to saw, clean, and seal each test section, individual estimates of productivity and installation costs for each joint seal treatment were not available. The only productivity data available were from Wells (table 4). In addition, material costs were available from both Wells (table 4) and Mesa (table 5).

Table 4. Material costs and sealant installation times at Wells, Nevada test site (Wienrank and Evans, 1995a).

| Material         | Sealant Cost                           | Average Installation Time for One Section, min |
|------------------|----------------------------------------|------------------------------------------------|
| Dow 890-SL       | \$11.95/L                              | 30                                             |
| Crafco 903-SL    | \$10.73/L                              | 25                                             |
| Dow 888-SL       | \$10.04/L                              | 25                                             |
| D.S. Brown V-812 | \$1.80/m<br>(includes lube & adhesive) | 115                                            |
| Mobay 960        | \$11.76/L                              | 27.5                                           |
| Crafco RS 902    | \$10.33/L                              | 40                                             |
| Dow 888          | \$10.83/L                              | 32.5                                           |

Table 5. Material costs at Mesa, Arizona test site (Meier et al., 1992)

| Sealant Material                                  | Cost, \$/m                        |
|---------------------------------------------------|-----------------------------------|
| Watson Bowman Compression Seal Lubricant Total    | 2.03 <sup>a</sup><br>0.13<br>2.16 |
| Elastomer PV-687 Compression Seal Lubricant Total | 1.90<br><u>0.13</u><br>2.03       |
| Crafco RS 221 Hot-Applied<br>Flush Oil<br>Total   | 0.16<br><u>0.07</u><br>0.23       |
| Crafco SS 444 Hot-Applied<br>Flush Oil<br>Total   | 0.29<br><u>0.07</u><br>0.36       |
| Dow 890-SL                                        | 1.64                              |
| Dow 888-SL                                        | 1.64                              |
| Mobay Baysilone 960-SL                            | 1.61                              |
| Dow 888                                           | 1.34                              |
| Crafco 903-SL                                     | 1.34                              |

<sup>&</sup>lt;sup>a</sup> Used in place of Elastomer PV-687.

| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| obrasite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| acceptance of the control of the con |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 77,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| STATE OF THE PERSONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 100000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| decident.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| THE REAL PROPERTY.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| The same of the sa |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| - Annihila                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| DO D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| National Section 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| į.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| to the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| The state of the s |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  | the first of the second of the |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |

# **CHAPTER 3. MATERIAL TESTING**

As a check to ensure that the sealants used in the test sites met the specifications maintained by the manufacturers, laboratory material testing was performed. These tests were completed on samples taken from the batches of material shipped to and used at each site. For reasons not reported, not all sealant products placed in the SPS-4 supplemental joint seal sites were tested. Most of the testing was conducted on silicone materials; however, some compression seals and some hot-applied sealants were also tested. This chapter discusses the tests that were performed under the SPS-4 supplemental joint seal studies and presents the results of those tests.

# **Laboratory Tests Performed**

Formal laboratory testing, using SHRP LTPP procedures, was conducted on field-retrieved sealant samples from four of the six SPS-4 test sites. None of the sealants installed at the Campo and Tremonton sites were formally tested. However, the results of material tests performed by the manufacturers of sealants installed at Campo were made available by the manufacturers. Table 6 summarizes, by test site, the types of materials tested, both formally under the SHRP LTPP program and internally by the sealant manufacturers.

The battery of tests performed on each sealant type consisted of general material property tests (e.g., specific gravity, extrusion rate) and performance-related tests (e.g., bond, tensile stress under elongation). Table 7 lists the individual tests performed on each sealant type and the corresponding designated test method and guiding specification.

Table 6. Summary of laboratory testing of SPS-4 supplemental joint seal materials.

| Test Site          | SHRP LTPP Laboratory Testing                                                                      | Material Manufacturer Laboratory Testing                                        |
|--------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Mesa, AZ           | Compression seals Hot-applied seals Non-self-leveling silicone seals Self-leveling silicone seals | NA                                                                              |
| Campo, CO          | NA                                                                                                | Compression seals Non-self-leveling silicone seals Self-leveling silicone seals |
| Wells, NV          | Non-self-leveling silicone seals<br>Self-leveling silicone seals                                  | NA                                                                              |
| Tremonton, UT      | NA                                                                                                | NA                                                                              |
| Salt Lake City, UT | Self-leveling silicone seals                                                                      | NA                                                                              |
| Heber City, UT     | Self-leveling silicone seals                                                                      | NA                                                                              |

Table 7. Summary of laboratory tests performed on various sealant types.

| Sealant Type               | Test Description                           | Test Method           | Guiding Specification |  |
|----------------------------|--------------------------------------------|-----------------------|-----------------------|--|
| Non-self-leveling Silicone | Tensile stress @ 150% strain               | ASTM D 412 (die C)    | Georgia DOT 106       |  |
| and                        | Durometer hardness                         | ASTM D 2240           | Georgia DOT 106       |  |
| Self-leveling Silicone     | Bond to PCC mortar                         | AASHTO T-132          | Georgia DOT 106       |  |
|                            | Tack-free time                             | ASTM C 679            | Georgia DOT 106       |  |
|                            | Extrusion rate                             | MIL S-8802            | Georgia DOT 106       |  |
|                            | Specific gravity                           | ASTM D 792            | Georgia DOT 106       |  |
|                            | Movement capability and adhesion           | ASTM C 719            | Georgia DOT 106       |  |
|                            | Non-volatiles                              |                       | Georgia DOT 106       |  |
|                            | Elongation at break                        | ASTM D 412 (die C)    | Michigan DOT          |  |
| Preformed Neoprene         | Tensile strength                           | ASTM D 412 (die C)    | ASTM D 2628           |  |
|                            | Elongation at break                        | ASTM D 412 (die C)    | ASTM D 2628           |  |
|                            | Durometer hardness                         | ASTM D 2240 (mod.)    | ASTM D 2628           |  |
|                            | Accelerated aging                          | ASTM D 573            | ASTM D 2628           |  |
|                            | Very low-temperature recovery              | ASTM D 2628           | ASTM D 2628           |  |
|                            | Low-temperature recovery                   | ASTM D 2628           | ASTM D 2628           |  |
|                            | High-temperature recovery                  | ASTM D 2628           | ASTM D 2628           |  |
|                            | Compression-deflection @ 80% nominal width | ASTM D 2628           | ASTM D 2628           |  |
|                            | Oil swell                                  | ASTM D 471            | ASTM D 2628           |  |
| Hot-Applied                | Penetration                                | ASTM D 3583           | ASTM D 3406           |  |
| PVC-Coal Tar               | Flow                                       | ASTM D 3583           | ASTM D 3406           |  |
|                            | Non-immersed bond                          | ASTM D 3583           | ASTM D 3406           |  |
|                            | Water-immersed bond                        | ASTM D 3583           | ASTM D 3406           |  |
|                            | Resilience                                 | ASTM D 3583           | ASTM D 3406           |  |
|                            | Oven-aged resilience                       | ASTM D 3583           | ASTM D 3406           |  |
|                            | Tensile adhesion                           | ASTM D 3583           | ASTM D 3406           |  |
|                            | Flexibility                                | ASTM D 3583           | ASTM D 3406           |  |
| Hot-Applied                | Penetration                                | ASTM D 3407           | ASTM D 3405           |  |
| Rubberized Asphalt         | Flow                                       | ASTM D 3407           | ASTM D 3405           |  |
|                            | Bond                                       | ASTM D 3407           | ASTM D 3405           |  |
|                            | Water-immersed bond                        | ASTM D 3407 (variant) | ASTM D 3405 (variant  |  |
|                            | Resilience                                 | ASTM D 3407           | ASTM D 3405           |  |
|                            | Brookfield viscosity                       |                       |                       |  |
|                            | Ductility                                  | ASTM D 113            |                       |  |
|                            | Asphalt compatability                      | ASTM D 3407           | ASTM D 3405           |  |

# **Laboratory Test Results**

Details of the laboratory testing results for selected materials installed at each site were provided in the six SPS-4 supplemental joint seal construction reports (Meier et al., 1992; Wienrank and Evans, 1995a, 1995b, 1995c, 1995d; Ambroz and Evans, 1996). Summaries of the results, categorized by sealant type, are provided in the sections below.

## Non-Self-Leveling Silicone Sealants

Non-self-leveling silicone material batches tested under the SHRP LTPP program included the following:

- Dow 888 at Mesa, Arizona.
- Dow 888 at Wells, Nevada.
- Mobay Baysilone 960 at Wells, Nevada.
- Crafco RS 902 at Wells, Nevada.

Though specific test results for the Dow 888 placed at Mesa were not listed in the construction report, it was reported that this material met the guiding specification for non-self-leveling silicone sealants (Georgia DOT silicone specification 106) (Meier et al., 1992).

The specific test results for the three silicones placed at Wells are presented in table 8. All three sealants met the guiding non-self-leveling silicone specification (Georgia DOT requirements).

The results of tests performed by Crafco on the RS 902 silicone installed at Campo are provided in table 9. This material met the guiding specification (based on Georgia DOT and Michigan DOT requirements) for non-self-leveling silicone sealants.

#### Self-Leveling Silicone Sealants

Self-leveling silicone material lots tested under the SHRP LTPP testing protocol included the following:

- Dow 888-SL at Mesa, Arizona.
- Dow 890-SL at Mesa, Arizona.
- Mobay Baysilone 960-SL at Mesa, Arizona.
- Crafco RS 903-SL at Mesa, Arizona.
- Dow 888-SL at Wells, Nevada.
- Dow 890-SL at Wells, Nevada.
- Crafco RS 903-SL at Wells, Nevada.
- Dow 888-SL at Salt Lake City, Utah.
- Dow 888-SL at Heber City, Utah.

Table 8. Formal laboratory testing results for non-self-leveling silicone sealants installed at Wells, Nevada test site (Wienrank and Evans, 1995a).

| Test Description                     | Test Method           | Georgia DOT<br>Specification | Mobay<br>Baysilone 960 | Crafco<br>RS 902 | Dow 888 |
|--------------------------------------|-----------------------|------------------------------|------------------------|------------------|---------|
| Tensile Stress @<br>150% Strain, kPa | ASTM D 412<br>(die C) | ≤ 310                        | 239.4                  | 278.8            | 247.0   |
| Durometer Hardness,<br>Shore A       | ASTM D 2240           | 10 - 25                      | 12                     | 10               | 16      |
| Bond to PCC Mortar,<br>kPa           | AASHTO T-132          | ≥ 345                        | 434.7                  | 648.6            | 579.6   |
| Tack-Free Time, min                  | ASTM C 679            | ≤ 90                         | 48                     | 55               | 51      |
| Extrusion Rate,<br>g/min             | MIL S-8802            | ≥ 75                         | 308                    | 167              | 196     |
| Non-volatiles, %                     |                       | ≥ 90                         | 94.9                   | 96.2             | 96.3    |
| Specific Gravity                     | ASTM D 792            | 1.1 - 1.5                    | 1.188                  | 1.297            | 1.488   |
| Movement Capability and Adhesion     | ASTM C 719            | 10 cycles @<br>± 50%         | Pass                   | Pass             | Pass    |

Table 9. Material manufacturer laboratory testing results for non-self-leveling silicone sealant installed at Campo, Colorado test site (Ambroz and Evans, 1996).

| Test Description                     | Test Method           | Georgia DOT<br>Specification | Michigan DOT<br>Specification | Crafco<br>RS 902 |
|--------------------------------------|-----------------------|------------------------------|-------------------------------|------------------|
| Tensile Stress @ 150% Strain,<br>kPa | ASTM D 412<br>(die C) | ≤ 310                        |                               | 209.1            |
| Durometer Hardness, Shore A          | ASTM D 2240           | 10 - 25                      |                               | 10               |
| Bond to PCC Mortar, kPa              | AASHTO T-132          | ≥ 345                        |                               | NA               |
| Tack-Free Time, min                  | <b>ASTM C</b> 679     | ≤ 90                         |                               | 70               |
| Extrusion Rate, g/min                | MIL S-8802            | ≥ 75                         |                               | NA               |
| Specific Gravity                     | ASTM D 792            | 1.1 - 1.5                    |                               | NA               |
| Movement Capability and Adhesion     | ASTM C 719            | 10 cycles @<br>± 50%         |                               | Pass             |
| Elongation at Break, %               | ASTM D 412<br>(die C) |                              | ≥ 700                         | 927              |

NA=Not available.

Specific test results for the four self-leveling silicones placed at Mesa were not listed in the construction report for that site. However, it was reported that only the Dow 888-SL met the guiding Georgia DOT silicone specification (Meier et al., 1992). The Dow 890-SL sealant met all parts of the specification except the Durometer (Shore A) Hardness test, whereby the recorded value of 3 for the material was less than the requirement of 10 to 25. The Mobay Baysilone 960-SL sealant failed the movement capability and adhesion test (10 cycles, ±50%/0% at -18°C). Lastly, the Crafco RS 903-SL sealant failed both the Durometer (Shore A) Hardness test (a test value of 2, which was lower than the 10 to 25 requirement) and the Tack-Free Time test (135 minutes, as compared to a maximum of 90 minutes).

As seen in table 10, two of the three silicones placed at Wells met the guiding self-leveling silicone specification (Georgia DOT requirements). Only the Crafco RS 903-SL did not, as it failed the Tack-Free/Skin-Over Time test (219 minutes, as compared to a maximum of 90 minutes).

Table 11 shows the results of the tests performed on separate batches of Dow 888-SL placed at Salt Lake City and Heber City. As can be seen, the Heber City batch met all parts of the guiding self-leveling silicone specification (Georgia DOT requirements), whereas the Salt Lake City batch failed the requirement for tensile stress at 150 percent strain (322.2 kPa, as compared to a maximum of 276 kPa).

The results of tests performed by Crafco on its RS 903-SL silicone installed at Campo are provided in table 12. As can be seen, this material met the guiding specification for self-leveling silicone sealants (Georgia DOT requirements).

Table 10. Formal laboratory testing results for self-leveling silicone sealants installed at Wells, Nevada test site (Wienrank and Evans, 1995a).

| Test Description                     | Test Method           | Georgia DOT Specification | Crafco<br>RS 903-SL | Dow<br>888-SL | Dow<br>890-SL |
|--------------------------------------|-----------------------|---------------------------|---------------------|---------------|---------------|
| Tensile Stress @<br>150% Strain, kPa | ASTM D 412<br>(die C) | ≤ 276                     | 73.8                | 162.8         | 73.8          |
| Durometer Hardness<br>(Shore A)      | ASTM D 2240           |                           | 0                   | 7             | 1             |
| Bond to PCC Mortar,<br>kPa           | AASHTO T-132          | ≥ 276                     | 331.2               | 427.8         | 407.1         |
| Tack-Free Time, min                  | ASTM C 679            | ≤ 90<br>(skin over)       | 219                 | 52            | 64            |
| Extrusion Rate, g/min                | MIL S-8802            | ≥ 90                      | 1,447               | 377           | 326           |
| Non-volatiles, %                     |                       | ≥ 90                      | 96.4                | 94.3          | 97.6          |
| Specific Gravity                     | ASTM D 792            | 1.1 - 1.5                 | 1.335               | 1.344         | 1.318         |
| Movement Capability and Adhesion     | ASTM C 719            | 10 cycles @<br>± 50%      | Pass                | Pass          | Pass          |

Table 11. Formal laboratory testing results for self-leveling silicone sealants installed at Salt Lake City and Heber City, Utah test sites (Wienrank and Evans, 1995c and 1995d).

| Test Description                     | Test Method           | Georgia DOT Specification | Dow 888-SL at<br>Salt Lake City, UT | Dow 888-SL at<br>Heber City, UT |
|--------------------------------------|-----------------------|---------------------------|-------------------------------------|---------------------------------|
| Tensile Stress @<br>150% Strain, kPa | ASTM D 412<br>(die C) | ≤ 276                     | 322.2                               | 129.0                           |
| Durometer Hardness<br>(Shore A)      | ASTM D 2240           |                           | <b>7</b>                            | 8                               |
| Bond to PCC Mortar,<br>kPa           | AASHTO T-132          | ≥ 276                     | 476.1                               | 627.9                           |
| Tack-Free Time, min                  | ASTM C 679            | ≤ 90<br>(skin over)       | 40                                  | 48                              |
| Extrusion Rate, g/min                | MIL S-8802            | ≥ 90                      | 226                                 | 307                             |
| Non-volatiles, %                     |                       | ≥ 90                      | 93.5                                | 93.8                            |
| Specific Gravity                     | ASTM D 792            | 1.1 - 1.5                 | 1.3                                 | 1.349                           |
| Movement Capability and Adhesion     | ASTM C 719            | ± 50% min                 | Pass                                | Pass                            |

Table 12. Material manufacturer laboratory testing results for self-leveling silicone sealant installed at Campo, Colorado test site (Ambroz and Evans, 1996).

| Test Description                     | Test Method           | Georgia DOT<br>Specification | Crafco<br>RS 903-SL |
|--------------------------------------|-----------------------|------------------------------|---------------------|
| Tensile Stress @ 150%<br>Strain, kPa | ASTM D 412<br>(die C) | ≤ 276                        | 199.4               |
| Durometer Hardness<br>(Shore A)      | ASTM D 2240           |                              | 57                  |
| Bond to PCC Mortar,<br>kPa           | AASHTO T-132          | ≥ 276                        | 428.5               |
| Tack-Free Time, min                  | ASTM C 679            | ≤ 90<br>(skin over)          | 49                  |
| Extrusion Rate, g/min                | MIL S-8802            | ≥ 90                         | 548                 |
| Specific Gravity                     | ASTM D 792            | 1.1 - 1.5                    | NA                  |
| Movement Capability and Adhesion     | ASTM C 719            | 10 cycles @<br>± 50%         | Pass                |
| Elongation at Break, %               | ASTM D 412<br>(die C) |                              | 874                 |

NA=Not available.

# Compression Seals

Preformed neoprene compression seals tested under the SHRP LTPP laboratory testing protocol included the following:

- D.S. Brown V-687 at Mesa, Arizona.
- Watson Bowman 687 at Mesa, Arizona.
- Watson Bowman 812 at Mesa, Arizona.

Though specific test results for these compression seals were not listed in the Mesa construction report, it was reported that the D.S. Brown V-687 seal met all requirements except those for the High-Temperature Recovery test (70 hours @ 100°C, 50% deflection); the actual value was 80.5 percent and the required minimum value was 85 percent (Meier et al., 1992). Likewise, the two Watson Bowman seals met all requirements except those for the High-Temperature Recovery test. The Watson Bowman 687 seal registered a recovery of 66 percent, whereas the Watson Bowman 812 registered a recovery of 82 percent, both below the minimum requirement of 85 percent.

The results of tests performed by D.S. Brown on their E-437H and V-687 compression seals installed at Campo are provided in table 13. As can be seen, both materials met the guiding specification (ASTM D 2628 requirements).

Table 13. Material manufacturer laboratory testing results for neoprene compression seals installed at Campo, Colorado test site (Ambroz and Evans, 1996).

| Test Description                                                    | Test Method | ASTM D 2628<br>Specification | D.S. Brown<br>E-437H | D.S. Brown<br>V-687 |
|---------------------------------------------------------------------|-------------|------------------------------|----------------------|---------------------|
| Tensile Strength, kPa                                               | ASTM D 412  | 13,800                       | 18,630               | 17,478              |
| Elongation at Break, %                                              | ASTM D 412  | 250                          | 467                  | 467                 |
| Durometer Hardness<br>(Shore A)                                     | ASTM D 2240 | 50 - 60                      | 56                   | 56                  |
| High-Temperature Recovery (70 hour @ 100°C, 50% deflection), %      | ASTM D 2628 | ≥ 85                         | 98                   | 91                  |
| Low-Temperature Recovery<br>(72 hour @ -10°C, 50%<br>deflection), % | ASTM D 2628 | ≥ 88                         | 99                   | 97                  |
| Low-Temperature Recovery<br>(22 hour @ -29°C, 50%<br>deflection), % | ASTM D 2628 | ≥ 83                         | 98                   | 89                  |
| Compression-Deflection (80% nominal width), kg/mm                   | ASTM D 2628 | ≥ 0.063                      | 0.078                | 0.087               |

# Hot-Applied Sealants

Two hot-applied sealants were tested under the SHRP LTPP laboratory testing protocol. These sealants were as follows:

- Crafco RS 221, a rubberized asphalt sealant placed at Mesa, Arizona.
- Crafco SS 444, a PVC-coal tar sealant placed at Mesa, Arizona.

Though specific test results for these sealants were not listed in the Mesa construction report, it was reported that both materials met their respective specifications (ASTM D 3405 for Crafco RS 221 and ASTM D 3406 for Crafco SS 444) (Meier et al., 1992).

# **CHAPTER 4. FIELD PERFORMANCE**

As discussed in chapter 2, SPS-4 experimental joint sealants were installed at three test sites in 1991, two sites in 1992, and one site in 1995. With the exception of the Campo site, experimental joint seals were inspected for performance four times. These inspections were performed each fall, beginning in 1994 and ending in 1997. Joint seals at the Campo site were inspected three times, beginning in spring 1996 and ending in fall 1997. Table 14 provides a complete listing of the test site inspections (by week) and the corresponding approximate joint seal ages.

Prior to each field inspection, project staff were responsible for contacting the participating State maintenance agency and selecting the days to do the inspection. Normally, each test site required 2 days of inspection, whereby the lanes in which the experimental seals were installed were closed to traffic and a detailed evaluation of the conditions of the sealants and surrounding concrete was performed. Weather hampered the inspections in a few instances, making a third day necessary for completing the inspection.

#### **Performance Data Collection**

Several types of performance data were routinely collected in the SPS-4 joint seal evaluations. These performance data primarily consisted of seal failure data and seal distress data, both derived from detailed, visual inspections. Seal failure was defined as a deterioration of the seal material or surrounding pavement that permits moisture or debris to pass below the seal. Seal distress was defined as those seal system deficiencies that result in a reduction in seal performance without inhibiting the seal's ability to resist the infiltration of moisture and debris below the seal. The complete list of failures and distresses evaluated in the field-molded sealants (silicone, hotapplieds, polysulfide) and preformed compression seals are as follows:

| Table 14. Summary of SPS-4 test site inspections and corresponding treatment ages. | Table 14. | Summary | of SPS-4 tes | st site inspections and | d corresponding | treatment ages. |
|------------------------------------------------------------------------------------|-----------|---------|--------------|-------------------------|-----------------|-----------------|
|------------------------------------------------------------------------------------|-----------|---------|--------------|-------------------------|-----------------|-----------------|

|                   | Mesa                | , AZ           | Campo, CO           |                | Wells, NV           |                | Tremonton, UT       |                | Salt Lake City, UT       |                | Heber City, UT      |                |
|-------------------|---------------------|----------------|---------------------|----------------|---------------------|----------------|---------------------|----------------|--------------------------|----------------|---------------------|----------------|
| Inspection<br>No. | Week of<br>Inspect. | Age,<br>months | Week of<br>Inspect.      | Age,<br>months | Week of<br>Inspect. | Age,<br>months |
| Installation      | 3/18-3/             | 31/91          | 11/15-11            | 1/19/95        | 8/14-8/             | 22/91          | 10/23-10            |                | 5/19-5/27/<br>6/29-8/14/ | , ,            |                     |                |
| 1                 | 11/20/94            | 45             | 4/21/96             | 5              | 9/25/94             | 37             | 9/18/94             | 47             | 9/18/94                  | 25             | 9/25/94             | 36             |
| 2                 | 2/11/96             | 60             | 10/27/96            | 11             | 10/22/95            | 50             | 11/12/95            | 61             | 11/12/95                 | 39             | 10/22/95            | 49             |
| 3                 | 2/2/97              | 72             | 11/2/97             | 24             | 10/20/96            | 62             | 11/17/96            | 73             | 11/17/96                 | 51             | 10/20/96            | 61             |
| 4                 | 1/25/98             | 83             |                     |                | 10/12/97            | 74             | 11/16/97            | 85             | 11/16/97                 | 63             | 10/12/97            | 73             |

#### Field-Molded Sealants

- Partial-depth adhesion loss.
- Full-depth adhesion loss (failure).
- Partial-depth spalling.
- Full-depth spalling (failure).
- Stone intrusion.
- Partial-depth cohesion loss.
- Full-depth cohesion loss (failure).

## Preformed Compression Seals

- Partial-depth spalling.
- Full-depth spalling (failure).
- Twisted/rolled seal (failure).
- Sunken seal (failure).
- Compression set (failure).
- Surface extrusion.
- Gap (failure).

Toward the goal of collecting the required performance data efficiently, consistently, and completely, a two-page joint seal evaluation form was prepared in a format similar to that used in the SHRP H-106 joint resealing experiment. The form contained adhesion loss and cohesion loss tables on one page and spall distress, compression seal distress, and stone intrusion tables on the second page, as illustrated in figure 22. It also contained an overall failure column, whereby the total length of all failures combined was recorded.

Because of the large number of transverse joint seals in each test section—often between 25 and 30—a statistical sampling plan was devised to permit the field survey crew to evaluate a representative subset of the joint seals without introducing bias into the evaluation results. In this sampling plan, 6 sets of 12 random joint numbers between 1 and 30 were generated using a random number generator. Each set of 12 random numbers was then randomly assigned to each test section at a test site. In this way, a semi-random joint selection pattern was established that would allow for the consistent evaluation of 12 joint seals within each section at a given site.

During each field inspection, each randomly selected transverse joint seal was examined for locations of failure and distress within twelve 0.305-m segments along the joint. Each identified failure or distress location was then measured (with the aid of two 1.8-m folding rulers) and recorded (in inches) on the evaluation form according to the corresponding joint number and position. In the case of adhesion and spall failures and distresses, the side of the joint (approach or leave) was also noted.

For hot- and cold-applied formed-in-place sealants, the overall failure length was identified as the total length of joint seal where moisture and debris were able to bypass the seal as a result of full-depth adhesion failure, cohesion failure, or spall failure. The same definition was applied to neoprene compression seals; however, failure modes consisted of spall failure, twisting, compression set, gap, and sunken seal.

|                 |     |                     |                      | Adhesi                 | on Loss             |                      |                                                                                                                                                                                                                                  | Tensile     | Failure |                     |                     | Construct              | ion Problen              | 18                        | Overall<br>Adh/Coh |
|-----------------|-----|---------------------|----------------------|------------------------|---------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------|---------------------|---------------------|------------------------|--------------------------|---------------------------|--------------------|
| Joint<br>ID Pos | Pos | Ptl.<br>Left,<br>in | Ptl.<br>Right,<br>in | Ptl.<br>Overall,<br>in | Full<br>Left,<br>in | Full<br>Right,<br>in | Full<br>Overall,<br>in                                                                                                                                                                                                           | Ptl.,<br>in | Full,   | Sunk<br>Ptl.,<br>in | Sunk<br>Full,<br>in | Missing<br>Seal,<br>in | <0.06 in<br>thick,<br>in | Tooling<br>Failure,<br>in | Failure,<br>in     |
| 04J421401       | 1   |                     |                      |                        |                     |                      |                                                                                                                                                                                                                                  |             |         |                     |                     |                        |                          |                           |                    |
| 04J421401       | 2   | 2                   | 2                    | 3                      | 0.000               |                      |                                                                                                                                                                                                                                  |             |         |                     |                     |                        |                          |                           |                    |
| 04J421401       | 3   | 4                   | 5                    | 9                      |                     |                      | 89                                                                                                                                                                                                                               |             |         |                     |                     |                        |                          |                           |                    |
| 04J421401       | 4   |                     |                      |                        | 3                   | 5                    | 5                                                                                                                                                                                                                                | 2           | 1       |                     |                     |                        |                          |                           | 6                  |
| 04J421401       | 5   |                     |                      |                        |                     |                      | ra de la composición de la composición<br>La composición de la |             |         |                     |                     |                        |                          |                           |                    |
| 04J421401       | 6   |                     |                      |                        |                     |                      |                                                                                                                                                                                                                                  |             |         |                     |                     |                        |                          |                           |                    |
| 04J421401       | 7   |                     |                      |                        |                     |                      |                                                                                                                                                                                                                                  |             |         |                     |                     |                        |                          |                           |                    |
| 04J421401       | 8   |                     |                      |                        |                     |                      |                                                                                                                                                                                                                                  |             |         |                     |                     |                        |                          |                           |                    |
| 04J421401       | 9   |                     |                      |                        |                     |                      |                                                                                                                                                                                                                                  |             |         |                     |                     |                        |                          |                           |                    |
| 04J421401       | 10  |                     |                      |                        | 3                   | 2                    | 5                                                                                                                                                                                                                                |             |         |                     |                     |                        |                          |                           | 5                  |
| 04J421401       | 11  |                     | and the second       |                        |                     |                      |                                                                                                                                                                                                                                  |             |         |                     |                     |                        |                          |                           |                    |
| 04J421401       | 12  | v Tak ka            | and the second       |                        |                     |                      | 2.41                                                                                                                                                                                                                             | -125 de 10  |         | de Carlota          |                     |                        |                          |                           |                    |

|             |      | Sliver Spall Distress |                      |                        |                     |                      |                        |                     | PCC Edge Failure     |                        |                       | Compression Seal Distress |                     |            |                         |                          |
|-------------|------|-----------------------|----------------------|------------------------|---------------------|----------------------|------------------------|---------------------|----------------------|------------------------|-----------------------|---------------------------|---------------------|------------|-------------------------|--------------------------|
| Joint<br>ID | Pos. | Ptl.<br>Left,<br>in   | Ptl.<br>Right,<br>in | Ptl.<br>Overall,<br>in | Full<br>Left,<br>in | Full<br>Right,<br>in | Full<br>Overall,<br>in | Full<br>Left,<br>in | Full<br>Right,<br>in | Full<br>Overall,<br>in | Twist/<br>Roll,<br>in | Sunk<br>>0.5 in,<br>in    | Comp.<br>Set,<br>in | Gap,<br>in | Comp.<br>Overall,<br>in | System<br>Failure,<br>in |
| 04J421401   | 1    |                       |                      |                        |                     |                      |                        | 11                  |                      | 11                     |                       |                           |                     |            |                         |                          |
| 04J421401   | 2    |                       | 1                    | 1                      |                     |                      |                        |                     |                      |                        |                       |                           |                     |            |                         |                          |
| 04J421401   | 3    |                       | 1                    | 1                      |                     |                      |                        |                     |                      |                        |                       | 100                       |                     |            |                         |                          |
| 04J421401   | 4    |                       |                      |                        |                     |                      |                        |                     |                      |                        |                       |                           |                     |            |                         | 6                        |
| 04J421401   | 5    |                       | 1                    | 1                      |                     |                      |                        |                     |                      |                        |                       |                           |                     |            |                         |                          |
| 04J421401   | 6    |                       |                      |                        | 4.3                 |                      |                        |                     |                      |                        |                       |                           |                     |            |                         |                          |
| 04J421401   | 7    |                       | 1                    | 1                      |                     | 1                    | 1                      |                     |                      |                        |                       |                           |                     |            |                         | 1                        |
| 04J421401   | 8    |                       |                      |                        |                     |                      |                        |                     |                      |                        |                       |                           |                     |            |                         |                          |
| 04J421401   | 9    |                       | 1                    | 1                      |                     |                      |                        |                     |                      |                        |                       |                           |                     |            | 1.                      |                          |
| 04J421401   | 10   |                       |                      |                        |                     |                      |                        |                     |                      |                        |                       |                           |                     |            |                         | 5                        |
| 04J421401   | 11   |                       |                      |                        |                     |                      |                        |                     |                      |                        |                       |                           |                     |            |                         |                          |
| 04J421401   | 12   |                       |                      |                        |                     |                      |                        |                     |                      |                        |                       |                           |                     |            |                         |                          |

1 in = 25.4 mm

Figure 22. SPS-4 supplement joint seal performance evaluation form.

To evaluate the resilience, adhesive properties, and cohesive properties of the field-molded seal materials, two field tests were completed: the coin test and the pull-out test. These tests were performed as specified in the SHRP H-106 Evaluation and Analysis Plan (EAP) (Evans et al., 1992). Coin tests were completed on hot-applied and silicone sealant materials, and pull-out tests were carried out on hot-applied, silicone, and polysulfide sealants. The coin test is an indicator of sealant resiliency at the testing temperature, and the pull-out test reveals the adhesive and cohesive properties of sealant materials in the joints. Due to time constraints, coin tests and pull-out tests were performed only at the Campo site. The IA-VAC joint seal vacuum testing device was also used on randomly selected joint seals at the Campo site. A representative of the Colorado DOT performed the IA-VAC testing.

Once all of the performance data for a particular test site and field inspection were collected, the data were manually entered into Microsoft Access<sup>®</sup>, which served as the database manager for the SPS-4 supplemental joint seal experiment. The entered data were carefully checked for accuracy and corrections were made as necessary.

#### **Field Performance Results**

The bottom-line assessment of joint seal performance in this study is based on the percentage of total joint length that has experienced a failure of one type or another. This percentage of failure is computed using the following equation:

$$\%Fail = (L_{fail} / L_{total}) \times 100\%$$
 (Eq. 1)

where:

%Fail = Percentage of joint seal failed, %.

 $L_{\text{fail}}$  = Length of failed joint seal, mm.  $L_{\text{total}}$  = Total length of joint seal, mm.

In most of the reporting contained herein, joint seal effectiveness is discussed. Joint seal effectiveness is the opposite of joint seal failure, and is computed as follows:

$$%Eff = 100\% - %Fail$$
 (Eq. 2)

where:

%Eff = Percentage of effective joint seal, %

%Fail = Percentage of joint seal failed, %.

As seen in figure 23, a comparison by test site of the overall performance of the transverse joint seals gives an indication of the rate of joint seal deterioration at each site. Though these performance trends are based on the individual performance trends of different groups of joint seal treatments, the greatest deterioration rates have been at the three Utah sites, whereas the lowest deterioration rates have been at the Mesa and Wells sites.

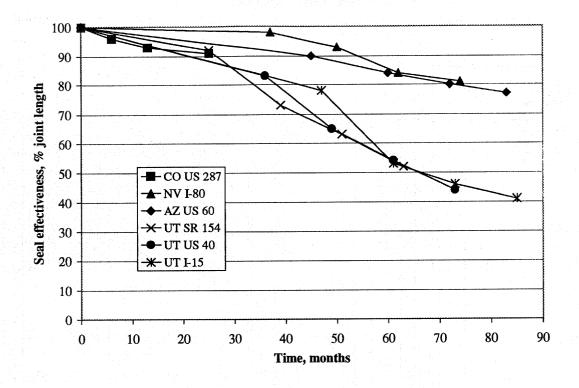



Figure 23. Overall performance of primary transverse joint seals at each test site.

#### Transverse Joint Seals

The overall effectiveness levels of transverse joint seals stemming from the 1997-1998 round of test site inspections are shown in table 15. As can be seen, several of the sealants have performed well, but many have performed very poorly. Based on the seal performance rating categories developed by Belangie and Anderson (1985) and shown in table 16, 26 of the 56 treatments have performed favorably (≥80 percent of the joint length has not failed), whereas 22 have reached "failed" status (<50 percent of the joint length has not failed). Seven treatments exhibited mediocre performance at the time of the 1997-1998 inspections, and one showed poor performance.

Figures 24 through 29 show, by test site, the overall percentage of failure that each treatment exhibited at the time of the 1997-1998 field inspections. These figures also show the types and percentages of individual failure modes contributing to the overall failure percentage. As can be seen, the predominant modes of failure varied by sealant type and by test site. Generally speaking, the main mechanism of failure in hot-applied seals (e.g., Crafco RS 221, Koch 9012) was adhesive failure, as illustrated in figure 30. Cohesive failure, which can also be seen in figure 30, was significant in some of the seals.

Table 15. Overall effectiveness levels of SPS-4 transverse joint seal treatments following 1997-1998 field inspection round.

|                     |                  | Overall Effectiveness, % joint length |                       |                      |                      |                                |                           |  |  |  |
|---------------------|------------------|---------------------------------------|-----------------------|----------------------|----------------------|--------------------------------|---------------------------|--|--|--|
| Sealant<br>Material | Joint<br>Config. | Mesa, AZ<br>(US 60)                   | Campo, CO<br>(US 287) | Wells, NV<br>( I-80) | Tremonton, UT (I-15) | Salt Lake City, UT<br>(UT 154) | Heber City, UT<br>(US 40) |  |  |  |
| Crafco RS 221       | С                | 10.7                                  |                       |                      |                      | 42.4                           |                           |  |  |  |
| Crafco SS 444       | С                | 31.7                                  |                       |                      |                      |                                |                           |  |  |  |
| Crafco 902          | Α                |                                       | 97.5                  |                      |                      |                                |                           |  |  |  |
|                     | В                |                                       | 97.1                  |                      |                      |                                |                           |  |  |  |
|                     | С                |                                       | 98.8                  | 84.3                 |                      |                                |                           |  |  |  |
|                     | G                |                                       | 96.2                  |                      |                      |                                |                           |  |  |  |
| Crafco 903-SL       | Α                |                                       | 85.4                  |                      |                      |                                |                           |  |  |  |
|                     | В                |                                       | 97.7                  |                      |                      |                                |                           |  |  |  |
|                     | С                | 98.0                                  | 99.0                  | 87.0                 |                      |                                |                           |  |  |  |
| Dow 888             | С                | 98.9                                  |                       | 94.2°                |                      | 77.7                           | 15.9                      |  |  |  |
| Dow 888-SL          | С                | 97.7                                  |                       | 90.1                 | 48.1                 | 72.6                           | 19.2                      |  |  |  |
| Dow 890-SL          | Α                | 96.5                                  |                       |                      | 79.1                 | 25.6                           | 32.3                      |  |  |  |
|                     | В                | 98.4                                  |                       |                      |                      |                                |                           |  |  |  |
|                     | С                | 98.8                                  |                       | 89.3                 |                      |                                |                           |  |  |  |
|                     | Е                |                                       |                       |                      | 80.9 <sup>b</sup>    | 60.2                           | 67.6                      |  |  |  |
| DS Brown E-437H     | В                |                                       | 65.7°                 |                      |                      | 21.3                           | 73.7                      |  |  |  |
| DS Brown V-687      | С                | 29.7                                  | 82.5 <sup>b</sup>     |                      |                      | 69.9                           | 93.2                      |  |  |  |
| DS Brown V-812      | D                |                                       |                       | 35.6                 |                      |                                |                           |  |  |  |
| Koch 9005           | С                |                                       |                       |                      | 9.2                  |                                | 49.2                      |  |  |  |
| Koch 9012           | С                |                                       |                       |                      | 0.0                  | 30.1                           | 44.0                      |  |  |  |
| Koch 9050-SL        | С                |                                       |                       |                      |                      | 18.2                           | 0.1                       |  |  |  |
| Kold Seal           | С                |                                       |                       |                      | 1.3                  |                                |                           |  |  |  |
| Mobay 960           | С                |                                       |                       | 85.6                 | 93.7                 |                                |                           |  |  |  |
| Mobay 960-SL        | С                | 96.3                                  |                       |                      |                      |                                |                           |  |  |  |
| Roshek              | A                |                                       |                       |                      | 14.8 <sup>6</sup>    |                                |                           |  |  |  |
| Esco PV 687         | С                |                                       |                       |                      | 21.0                 |                                |                           |  |  |  |
| Watson Bowman 687   | С                | 87.2 <sup>b</sup>                     |                       |                      |                      |                                |                           |  |  |  |
| Watson Bowman 812   | С                | 90.2 <sup>b</sup>                     |                       |                      |                      |                                |                           |  |  |  |
| Polvethylene        | F                |                                       |                       | 0.0 <sup>b</sup>     |                      |                                |                           |  |  |  |

Based on three replicate sections.Based on one replicate section.

- <u>Joint Configuration/Construction</u>
  A. Standard saw, 3-mm joint width.
- B. Standard saw, 6-mm joint width.
- C. Standard saw, 9-mm joint width.
- D. Standard saw, 13-mm joint width.
- E. Soff-Cut saw, 3-mm joint width.
- F. Undisturbed.
- G. Standard saw, 9-mm beveled joint.

Table 16. Summary of performance ratings.

| Rating             | Effectiveness Level, % | Number of Treatments |
|--------------------|------------------------|----------------------|
| Very good          | 90 to 100              | 18                   |
| Good               | 80.0 to 89.9           | 8                    |
| Fair               | 65.0 to 79.9           | 7                    |
| Poor               | 50.0 to 64.9           | 1                    |
| Very poor (failed) | 0 to 49.9              | 22                   |

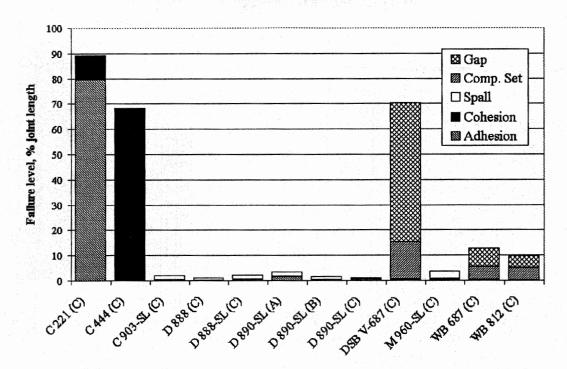



Figure 24. Overall failure of transverse joint seals at Mesa, Arizona test site.

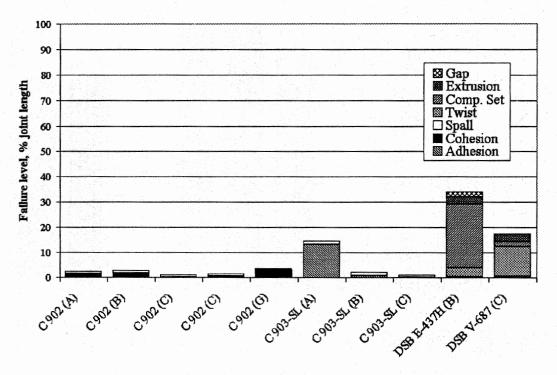



Figure 25. Overall failure of transverse joint seals at Campo, Colorado test site.

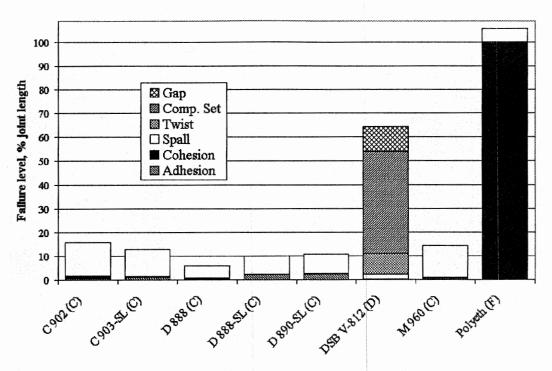



Figure 26. Overall failure of transverse joint seals at Wells, Nevada test site.

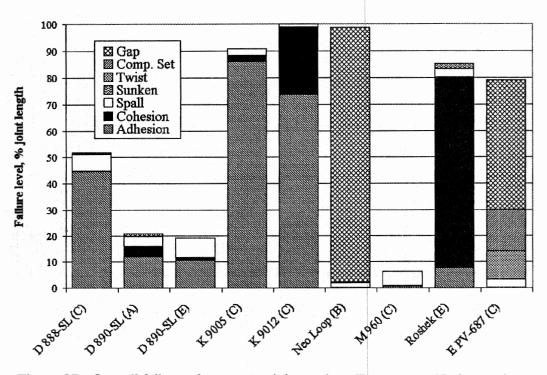



Figure 27. Overall failure of transverse joint seals at Tremonton, Utah test site.

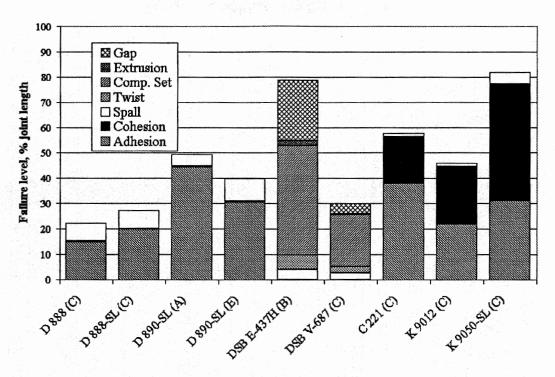



Figure 28. Overall failure of transverse joint seals at Salt Lake City, Utah test site.

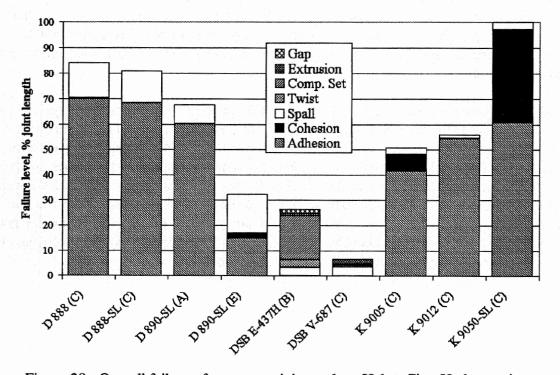



Figure 29. Overall failure of transverse joint seals at Heber City, Utah test site.

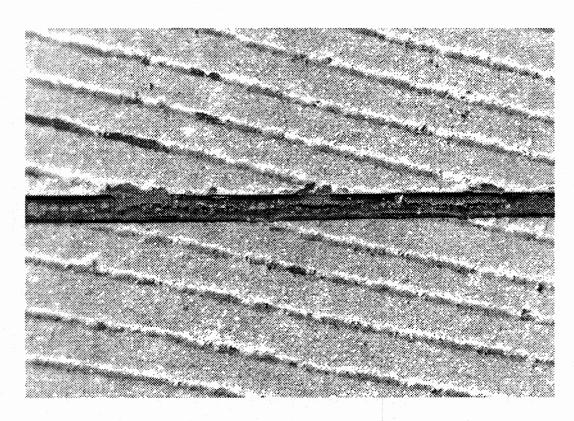



Figure 30. Adhesion and cohesion failure in hot-applied rubberized asphalt seal.

For the non-self-leveling silicone seals, the primary failure mode varied. At a majority of the sites, spall failure (figure 31) comprised most of the failure in these seals, whereas at other sites, adhesive failure was the controlling mechanism. Similar performance characteristics were observed with the self-leveling silicone sealants, except that adhesive failure was predominant at the majority of sites.

The most common failure modes for the compression seals were compression set and gap failure. In compression set, the neoprene web structure loses its ability to exert outward pressure as a result of being in a state of compression for very long periods of time. Thus, when the joint opens, the seal loses contact with the joint sidewall and an opening in the seal system is created that allows infiltration of moisture or debris. Gap failure, which is closely related to compression set, occurs when joints open wider than the compression seal is able to span, and stones work their way between the edge of the compression seal and the edge of the joint. When the joint contracts, the stones remain between the seal and the joint edge and allow water to bypass the edge of the seal. Figure 32 illustrates the gap phenomenon.

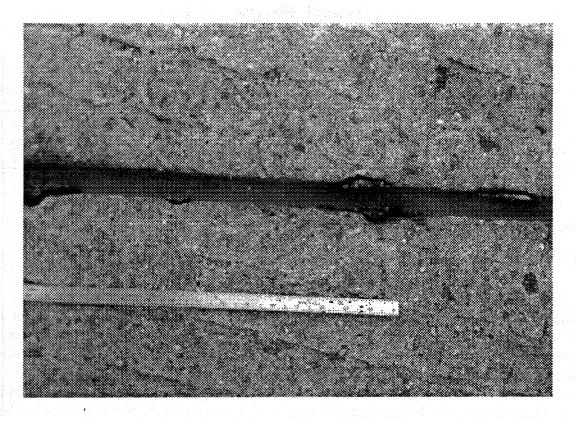



Figure 31. Spall failure in self-leveling silicone seal.

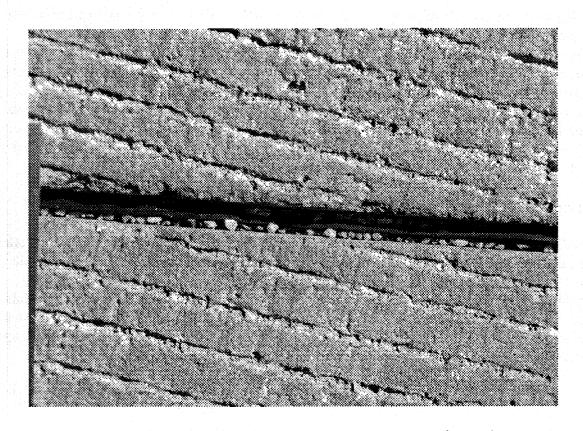



Figure 32. Gap failure in preformed neoprene compression seal.

# Longitudinal Joint Seals

Longitudinal joints were sealed with the same material as the transverse joints at the Mesa and Wells sites, and similar evaluations were conducted on these seals. The overall failure levels and failure mode breakdowns for each seal type placed at these two sites are displayed in figures 33 and 34. For the most part, the failure levels and modes for these seals are similar to those of the transverse joint seals. The primary exception is that the polyethylene sealant placed at the Wells site is performing significantly better in the longitudinal joints than in the transverse joints. This can probably be attributed to less joint movement at the longitudinal joint.

#### Overall Sealant Material Performance

# Hot-Applied Rubberized Asphalt Seals

Hot-applied rubberized asphalt sealants meeting the ASTM D 3405 specification were installed at all sites except Wells and Campo. The products installed were Crafco RS 221 and Koch 9005, and the average effectiveness level for this material type as a transverse joint sealant following the 1997-1998 field inspection round was about 28 percent. In longitudinal joints at the Mesa site, the average effectiveness of this material type was 22 percent. Adhesion failure accounted for about 85 percent of the total failure in these materials placed in transverse joints. The best performance of rubberized asphalt sealants was obtained at the Salt Lake City and Heber City sites, with much worse performance at the Mesa and Tremonton sites.

The performance of similar seals placed in the SHRP H-106 joint resealing experiment was considerably better (Evans et al., 1999). After approximately 7 years, Koch 9005, placed recessed in sawn joints at five U.S. test sites, had an average effectiveness of about 72 percent. Crafco RS 221 placed recessed in sawn joints at a site in Phoenix, Arizona had an effectiveness of 57 percent after 7 years. It is believed that the level of joint cleaning is a major factor in the performance differences between the SPS-4 hot-applied seals and the H-106 hot-applied seals. With the exception of the Mesa site where joints were sandblasted, waterblasted, and airblasted, the cleaning effort for the hot-applied seals at the other SPS-4 sites (Salt Lake City, Tremonton, and Heber City) was not to the level used in the H-106 sites (sandblast and airblast).

# Hot-Applied PVC-Coal Tar Seals

ASTM D 3406 hot-applied PVC-coal tar sealants were placed in the Mesa and three Utah test sites, using either Crafco SS 444 or Koch 9012. The average effectiveness of these materials placed in transverse and longitudinal joints was 32 and 53 percent, respectively. Full-depth adhesion loss was the predominant failure mode, as it comprised 55 percent of the overall failure in transverse seals. Cohesion failure was also a significant contributor, particularly at the Mesa site, where possible overheating of the sealant prior to installation may have altered the properties of the Crafco SS 444 in one of the replicates.

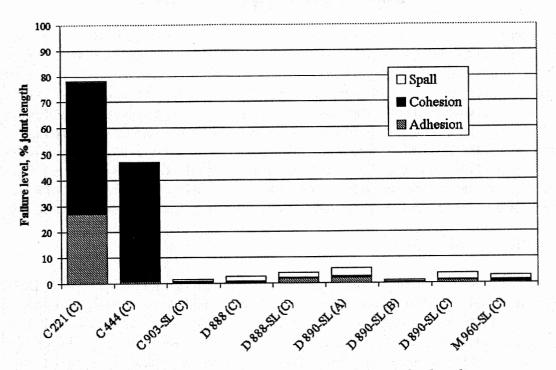



Figure 33. Overall failure of longitudinal joint seals placed at Mesa, Arizona test site.

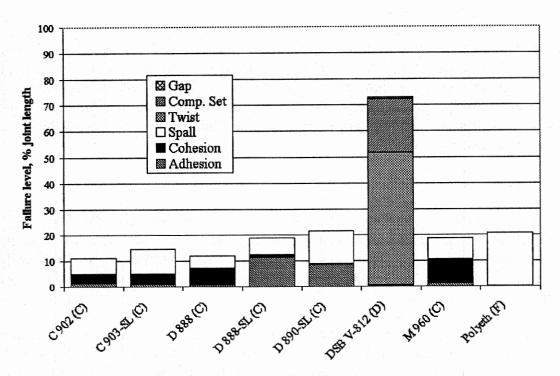



Figure 34. Overall failure of longitudinal joint seals placed at Wells, Nevada test site.

# Non-Self-Leveling Silicone Seals

Non-self-leveling silicone sealant products from Dow, Crafco, and Mobay were placed at all six test sites, and this material type's performance has arguably been the best. Of 11 total treatments, only 1 exhibited unfavorable performance (<80 percent effectiveness) in the 1997-1998 field inspections. Dow 888, placed in 9-mm joints at Heber City, experienced considerable adhesion failure, causing its effectiveness rating to drop to 15 percent (joint cleanliness may have been a factor in this failure). Inclusion of this treatment in the calculation of the average effectiveness of the 11 standard silicone treatments resulted in a rating of 85 percent, whereas exclusion resulted in a rating of 92 percent. Not considering the Dow 888 placed at Heber City, the predominant mode of failure in this material type was spall failure (56 percent of total failure); however, considerable percentages of adhesive and cohesive failure were also observed.

## Self-Leveling Silicone Seals

A total of 21 self-leveling silicone sealant treatments, consisting of Dow 888-SL, Dow 890-SL, Crafco 903-SL, and Mobay 960-SL placed in 3-mm (standard and Soff-Cut), 6-mm, and 9-mm sawed joints, were installed at the six test sites. Of these 21 treatments, 4 exhibited poor or fair performance (50.0 to 79.9 percent effectiveness) and 4 more exhibited failed performance (<50.0 percent effectiveness) in the 1997-1998 field inspections. These eight unfavorably performing treatments were located at the three Utah sites, and the predominant failure mode was adhesive failure (97 percent of total failure). Among the 13 favorably performing treatments, the primary failure type was spall failure (56 percent of total failure), with considerable percentages of adhesive and cohesive failure also observed.

# Self-Leveling Polysulfide Seals

Koch 9050-SL one-part polysulfide sealant was installed at the Salt Lake City and Heber City sites. The average effectiveness level of this sealant after the 1997-1998 field inspections was 9 percent, with a slightly higher percentage of adhesive failure than cohesive failure. Apart from the proprietary sealant installed at Tremonton, this material performed the worst of those placed at the six test sites. During inspection, the polysulfide sealant was found to be very stiff with very little extension ability.

# Preformed Compression Seals

Neoprene compression seal materials manufactured by D.S. Brown, Watson Bowman, Esco, and a fourth manufacturer were installed at all six sites. In general, performance of this material type was mixed, as 4 of the 12 treatments performed favorably at the time of the 1997-1998 field inspections and 5 reached failed status. The average effectiveness level of this seal type was 56 percent.

The one-celled Kold Seal Neo Loop seal (figure 35), installed at Tremonton, performed very poorly, with only 1 percent of its length still effective after the 1997-1998 field inspections. The primary mode of failure in this product was gap failure, which is believed to be partly the result of the seal's design and the roadway conditions. The seal has a bulb at its surface that projects

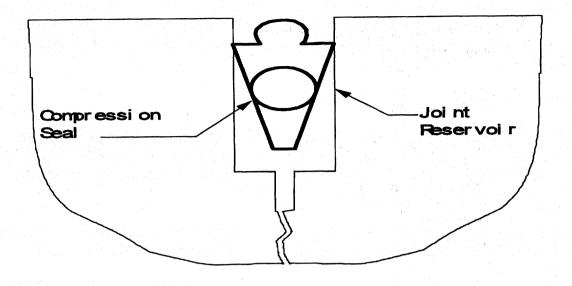



Figure 35. Kold Seal Neo Loop compression seal design.

above the top of the main seal flanges. Small stones and sand wedged between the bulb and the joint edges when the joints were at their widest opening. In the summer, the joints closed to a smaller width, but the stones between the bulb and the joint walls remained in place. Because the bottom of the seal was allowed to compress inward toward the center of the joint, a gap developed between the seal flanges and the joint edge. In some cases, the width of the gap was nearly 3 mm, thus allowing the infiltration of water and debris into the joint.

The four-cell Esco PV-687 compression seal, installed at Tremonton, experienced considerable gap failure, as well as some compression set and twist failures. As a result, its effectiveness during the 1997-1998 field inspections fell to 21 percent.

D.S. Brown compression seals of various widths were used at all but the Tremonton site. The E-437H seal was used in 6-mm joints at three sites with mixed results. At Heber City, the effectiveness of this product remained relatively high, whereas at Salt Lake City, Utah, failure was reached. At the 2-year-old Campo site, effectiveness dropped to 65 percent. Compression set comprised approximately 54 percent of the overall failure and gap failure comprised 20 percent of the overall failure. The V-687 seal was installed in 9-mm joints at the above three sites and Mesa. This product's effectiveness was very low (29 percent) at Mesa, mostly as a result of gap failure and compression set. The seal performed much better at the Campo, Salt Lake City, and Heber City sites, with effectiveness levels ranging from 69 to 93 percent at the time of the 1997-1998 field inspections. Primary modes of failure of this product varied by test site, with compression set being the predominant factor at Salt Lake City and twisting, which occurred during installation, the main factor at Campo. The V-812 seal, placed in 13-mm joints at Wells, received an effectiveness rating of 35 percent in the 1997-1998 field inspections. The primary mode of failure was compression set, with considerable percentages of twist and gap failure also recorded.

Finally, two Watson Bowman seals, WB-687 and WB-812, were installed in 9-mm joints at the Mesa site. Both of these products have performed favorably after 83 months of service. Compression set and gap failure each comprised about 50 percent of the overall failure of these seal products.

#### Miscellaneous Seals

In the final round of field inspections, the proprietary sealant material provided by Mike Roshek (Utah DOT) and installed at the Tremonton site exhibited 14 percent effectiveness. Full-depth cohesion loss was the predominant failure mechanism for this sealant, with some adhesive failure, spall failure, and sunken seal failure also noted.

The polyethylene sealant installed at Wells in 1980 showed 0 percent effectiveness long before the final round of field inspections. The vast majority of the failed length was the result of cohesive failure.

## Joint Configuration Performance

Comparison of the effectiveness levels of the various silicone seal treatments indicate limited potential performance differences with respect to joint configuration. For instance, seals installed at the Mesa site exhibited very little difference in performance when installed in 3-, 6-, and 9-mm-wide joints—effectiveness ranged from 96.5 to 98.8 percent. Also, at the Campo site, where Crafco 902 standard silicone and Crafco 903-SL self-leveling silicone were installed in 3-, 6-, and 9-mm-wide joints, effectiveness levels after 24 months remained very high and fairly similar to one another. Even the Crafco 902 seal placed in a 9-mm-wide beveled joint showed comparable performance.

Comparison of the Dow 890-SL self-leveling silicone seals placed in conventionally sawed and Soff-Cut sawed 3-mm joints at the three Utah sites indicates a possible difference in performance trends. At the Salt Lake City and Heber City sites, seals placed in the Soff-Cut joints showed much better performance than those placed in conventional joints. Similar performance by these two types of seals was observed at the Tremonton site.

# **CHAPTER 5. DATA ANALYSIS**

As stated in chapter 1, the primary objective of this experimental study was to determine the sealant material—joint configuration combinations that perform best in newly constructed pavements. To accomplish this objective, statistical analyses were conducted on the field performance data to identify differences in performance among the various experimental joint seal treatments installed at each site. This chapter describes the statistical methods used to analyze the various types of performance data and presents the results of the analyses.

## **Statistical Methodology**

The SPS-4 supplemental joint seal test sites were designed for a randomized block design analysis with the following two factors: treatments and position along the joint. Two replicates of 12 joints sealed using unique treatments comprised the blocks for analysis of seal performance at each site. Analyses of variance were performed on both the current (1997-1998) joint seal effectiveness levels and the service lives of the experimental seals, as defined by the time required for a sealant to reach 75 percent effectiveness, given its historical effectiveness trend.

Analysis of field performance data was conducted using SAS® statistical software version 6.12. In preparation for statistical analysis, performance data were compiled in spreadsheets, verified, and converted to American Standard Code for Information Interchange (ASCII) format. SAS® command files were prepared for each analysis, instructing the program how to read the ASCII data, what types of statistical analysis to perform, and what form of output was desired.

The SAS® General Linear Model (GLM) procedure with the multivariate analysis of variance (MANOVA) option was used for the analysis of treatment performance. This procedure uses the mean distress values and variability associated with each distress or failure to determine if the performance of two or more of the treatments is statistically different. The procedure was run in conjunction with the Tukey studentized range grouping method, which groups treatments of similar performance and ranks both the groups and the treatments within each group.

Analysis of variance yields a probability rating between 0 and 1 that the values of each distress are the same for each replicate, treatment, and position. For example, if there is no significant difference at one site between the adhesion failure of all treatments, the rating would be near 1. If, however, a significant difference exists between two or more of the treatments, the rating would be near 0. The ratings used in this study were based on a Type IV mean square, with Replicate\*Treatment as an error term. Also, probability ratings of 0.05 were used to indicate the existence of significant differences, based on a 95 percent confidence level.

#### **Analysis of Variance of Current Performance**

One way to evaluate the performance characteristics of different joint seal treatments is to statistically analyze the most recently documented effectiveness levels. This type of "snapshot" or

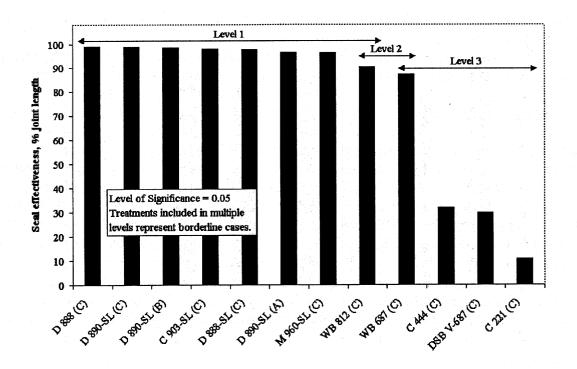



Figure 36. Overall effectiveness groupings for Mesa, Arizona transverse joint seal treatments.

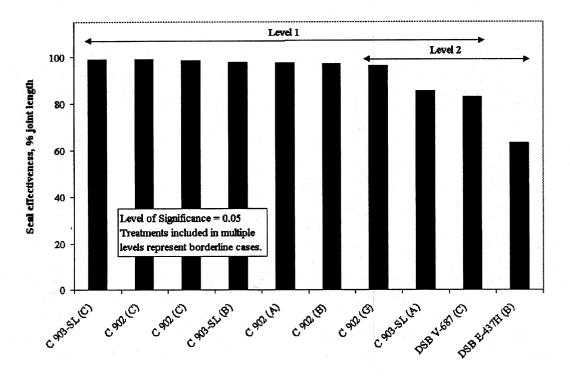



Figure 37. Overall effectiveness groupings for Campo, Colorado transverse joint seal treatments.

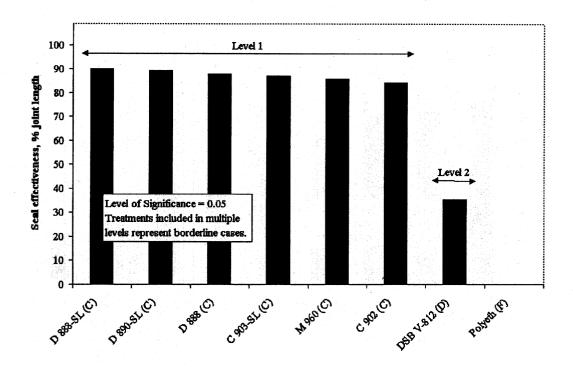



Figure 38. Overall effectiveness groupings for Wells, Nevada transverse joint seal treatments.

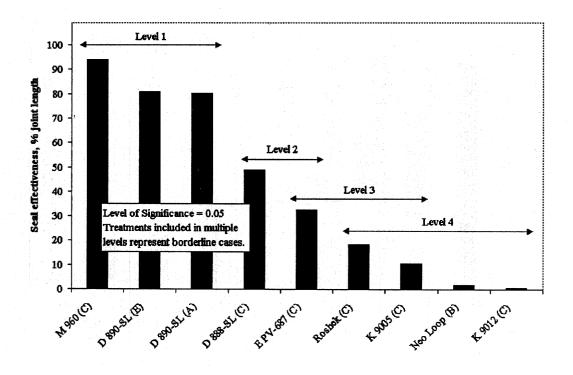



Figure 39. Overall effectiveness groupings for Tremonton, Utah transverse joint seal treatments.

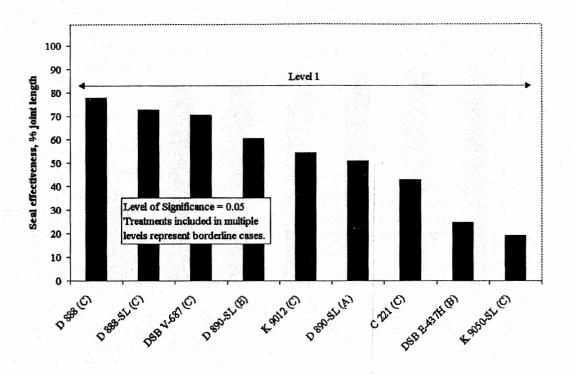



Figure 40. Overall effectiveness groupings for Salt Lake City, Utah transverse joint seal treatments.

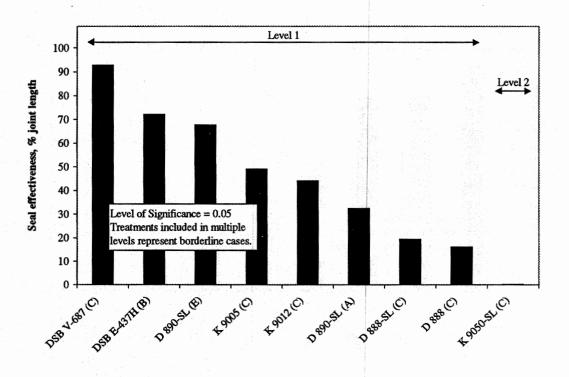



Figure 41. Overall effectiveness groupings for Heber City, Utah transverse joint seal treatments.

• In general, insufficient failure has occurred in the silicone treatments in order to find any statistical differences at this time. However, marginally poorer performance has been identified in the Crafco 902 seals placed in 9-mm-wide beveled joints and the Crafco 903-SL seals placed in 6-mm-wide joints. The former treatment was placed too thin in several joints (mean shape factor of 0.32 in one section), resulting in some cohesive failure. The latter treatment was placed too high in many locations, which exposed the seal to contact with traffic and has resulted in considerable adhesion failure.

#### Wells, Nevada

- Silicone seal treatments are performing significantly better than the D.S. Brown compression seal at this site. However, full-depth spalling has resulted in considerable overall failure (between 10 and 16 percent) in each treatment.
- Though some of the silicone seal treatments were found to have been installed with very low shape factors (<0.4), no statistical differences in current performance exist.
- At 0 percent effectiveness, the 18-year-old polyethylene sealant (all other seals are approximately 6 years old) represents the lowest category of current performance. All of its failures have been in the form of full-depth cohesion loss.

#### Tremonton, Utah

- With the exception of Dow 888-SL placed in 9-mm joints, silicone seal treatments are performing statistically better than the compression seals, hot-applied seals, and the Roshek seal. Although the two Dow 890-SL joint seal treatments are currently performing statistically the same as the Mobay 960 treatment, the fact that these treatments were occasionally placed high or thin in the joint has caused them to incur considerably more failure than the Mobay 960 seals.
- The low performance levels of the Esco PV-687 and Kold Seal Neo Loop compression seals are largely attributable to improper installation and poor design, respectively. Esco PV-687 seals were installed by hand rather than machine, and the unique design of the Kold Seal Neo Loop appears to foster gap failure.
- Full-depth adhesion loss is the primary reason for the two hot-applied seals (Koch 9005 and Koch 9012) falling in the lowest performance category at this site. Both seals were reported as being somewhat or very hard during the 1997-1998 field inspection, which may have led to the development of adhesion failure. As discussed in chapter 2, there was some difficulty in maintaining the proper application temperature of the Koch 9012 sealant during installation.

#### Salt Lake City, Utah

• Despite the fact that some treatments have experienced much greater amounts of failure than others, the results of Tukey groupings do not indicate a significant difference in

current overall performance between any of the various treatments. Nevertheless, the following points should be made with regard to the performance characteristics of some of the joint seal treatments:

- Two Dow 890-SL treatments showed considerably lower effectiveness levels than the Dow 888 and Dow 888-SL treatments. These lower effectiveness levels were partly the result of the seals being placed too high in the joint, leading to contact with traffic and, consequently, full-depth adhesion loss.
- The performance of the Koch 9012 seals may have been affected by contamination of the material during installation.
- High shape factors (>1.40) may have contributed to the very poor performance of the Crafco RS 221 seals.

## Heber City, Utah

- Tukey groupings indicate that all treatments, except Koch 9050-SL polysulfide, are statistically performing the same at this site. However, as seen in figure 41, there is a wide range in the effectiveness levels of the various treatments. It is believed that the variability in performance between replicate sections is the reason for no overall statistical differences among eight of the nine treatments. Recall from table 3 (chapter 2) that the joints in the eastbound lane test sections received much higher waterblasting and airblasting pressures than the joints in the westbound lane test sections. Other factors in the performance of some of these sealants are as follows:
  - About half of the D.S. Brown E-437H seals were installed by hand, which may account for some of the failure of this treatment.
  - Difficulty in placing the two Dow 890-SL seals in 3-mm joints could be a factor in the poor performance of these seals.
  - Placement of seals too high in the joint could be a factor for some of the treatments, particularly Dow 890-SL in 3-mm-wide joints, Koch 9012, Koch 9005, and D.S. Brown V-687.
- Mass adhesive and cohesive failures have led to the total failure of the Koch 9050-SL polysulfide seals. This material was found to be very hard during the 1997-1998 field inspection, and it showed poor resilience.

#### General

 Neoprene compression seals installed by hand have shown poorer performance than expected.

- Among 3-mm-wide joints formed using Soff-Cut equipment and wet-sawing equipment, and sealed with Dow 890-SL, no significant differences have been individually identified at the Tremonton, Salt Lake City, and Heber City sites.
- No statistical differences in current performance have been identified among Crafco 903-SL, Dow 888, Dow 888-SL, and Dow 890-SL seals placed in 9-mm-wide joints at either Mesa or Wells.

# Longitudinal Joint Seals

The results of the Tukey comparisons of current (1997-1998) longitudinal joint seal effectiveness are illustrated in figures 42 and 43. Noteworthy observations regarding the performance groupings of these seals at the Mesa and Wells sites are given below.

#### Mesa, Arizona

Generally speaking, the performance patterns of the longitudinal joint seals at Mesa mirror those of the transverse joint seals. No statistical differences in current performance were found, even though two hot-applied joint seal treatments (Crafco SS 444 and Crafco RS 221) showed substantial levels of failure. As with the transverse joint seals, extended heating and overheating of the Crafco SS 444 sealant (in one replicate) are likely to have attributed to this material's current poor performance.

#### Wells, Nevada

• Like the transverse joint seals at Wells, the statistical performance breakout of longitudinal joint seals at this site show the D.S. Brown V-812 compression seals with distinctly lower performance than all silicone seals. Full-depth spalling has also been the cause for considerable overall failure in the silicone treatments.

## Analysis of Variance of Service Life

A second way in which the performance of experimental seals was evaluated was through analysis of variance of joint seal service life. The service life of a particular seal type provides a better overall picture of performance because it indicates the seal's effectiveness over time and, more importantly, its longevity in maintaining a minimum acceptable level of effectiveness.

To conduct a service life analysis, it was first necessary to define a minimum acceptable effectiveness level. Because of the highly varying levels of failure observed throughout the SPS-4 test sites, a value of 75 percent effectiveness was chosen for this analysis. Figure 44 illustrates the service life determination concept. In this figure, a particular joint seal treatment has exhibited varying losses in effectiveness over time. After 54 months, the treatment maintained an 88 percent effectiveness rating. However, after 66 months, the treatment dropped to a 69 percent effectiveness rating. At the level of 75 percent effectiveness, the corresponding estimated age (i.e., service life) is 62 months.

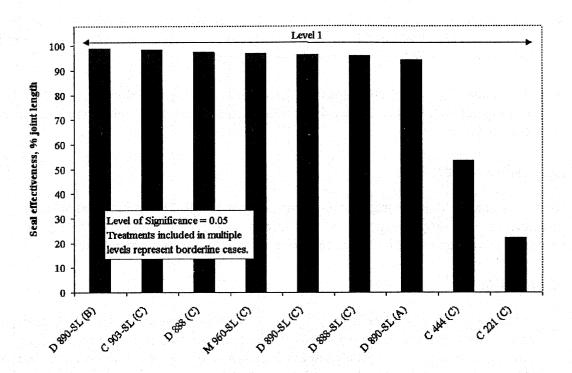



Figure 42. Overall effectiveness groupings for Mesa, Arizona longitudinal joint seal treatments.

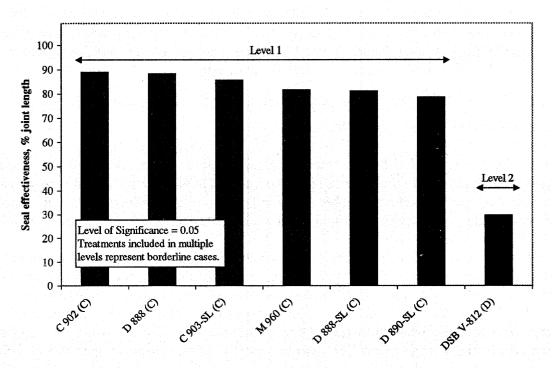



Figure 43. Overall effectiveness groupings for Wells, Nevada longitudinal joint seal treatments.



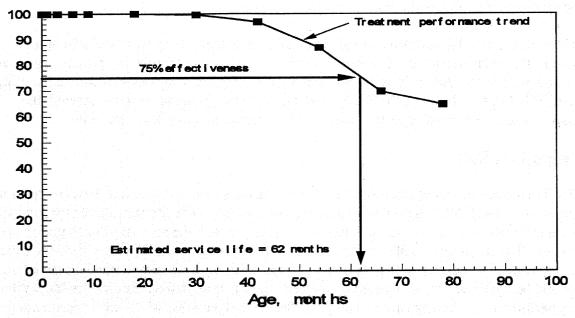



Figure 44. Illustration of service life estimation, based on 75 percent effectiveness.

For the analyses conducted in this study, the estimated service lives of individual joint seals were determined, and then the mean and standard deviation values of service life were computed for each joint seal treatment. This approach allowed for the consideration of the variation that exists in treatment performance from joint to joint.

Based on the appearances of the time-series performance data for many individual sealed joints, third-order polynomial regression was chosen to provide best-fit curves to each set of data. The form of a third-order polynomial regression equation is as follows:

$$\%Eff = a_0 + a_1 \times Age + a_2 \times Age^2 + a_3 \times Age^3$$
 (Eq. 3)

where: %Eff = Seal effectiveness, percent.  $a_0, a_1, a_2, a_3$  = Regression coefficients. Age = Seal age, months.

Following the completion of each regression, which was performed using the SAS® Regression (REG) procedure, the resulting a coefficient values were inserted into equation 3 and the Age term was solved for using the 75 percent effectiveness criterion (i.e., %Eff = 75). The resulting Age value represented the service life of a particular joint seal treatment applied to an individual joint. In many instances, the resulting Age value was equal to or less than the time period spent evaluating the joint seal. In other words, an individual joint seal had reached 75 percent effectiveness by its final evaluation, and so the computed Age value represented an estimate of the <u>actual</u> life. In other instances, however, an individual joint seal had not reached 75

percent effectiveness by its final evaluation, and the computed Age value represented an estimate of the <u>predicted</u> life. Figure 45 illustrates these two cases.

Using the service life estimates of individual joint seals comprising a particular joint seal treatment, the mean and standard deviation of service life for that treatment were calculated, as illustrated in table 18. An analysis of variance of the service life data was then conducted using the SAS® GLM procedure and the Tukey studentized range grouping method. As with the analysis of variance of current performance, a 95 percent confidence level was used.

## Transverse Joint Seals

The results of the Tukey analysis of estimated transverse joint seal service lives are illustrated in figures 46 through 50. These figures show the estimated service life statistics of the joint seal treatments installed at the various test sites, in conjunction with the resulting Tukey performance groupings. The mean service life of each treatment is displayed and is represented by the solid square symbol. The corresponding variation in service life, in terms of one standard deviation above and below the mean, is depicted by the vertical line through the mean service life symbol. Tukey performance groupings are given by the "level" designations, with level 1 representing the highest performance, followed by level 2, level 3, and so on. Because of the very high levels of effectiveness among the treatments at Campo and because of the short performance period there (2 years), it was determined that a service life analysis of the Campo treatments was premature.

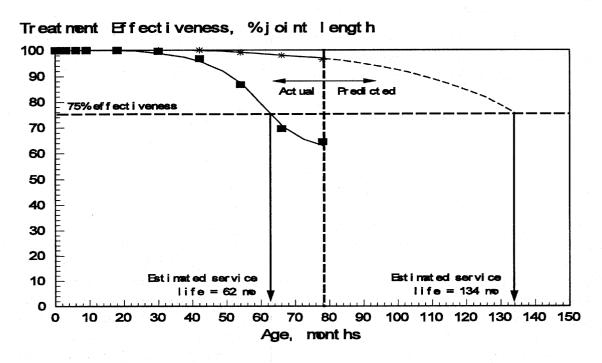



Figure 45. Illustration depicting estimates of actual and predicted service lives.

Table 18. Illustration of service life statistics computation.

| Replicate-Joint No. | Estimated Service Life, months | Replicate-Joint No.   | Estimated Service Life, months |
|---------------------|--------------------------------|-----------------------|--------------------------------|
| 1-2                 | 64.3                           | 2-2                   | 66.9                           |
| 1-5                 | 64.0                           | 2-5                   | 62.2                           |
| 1-8                 | 59.9                           | 2-8                   | 63.8                           |
| 1-10                | 56.7                           | 2-10                  | 65.1                           |
| 1-11                | 50.7                           | 2-11                  | 58.3                           |
| 1-13                | 61.2                           | 2-13                  | 69.4                           |
| 1-16                | 58.8                           | 2-16                  | 63.6                           |
| 1-18                | 74.2                           | 2-18                  | 60.4                           |
| 1-22                | 64.7                           | 2-22                  | 57.5                           |
| 1-23                | 70.1                           | 2-23                  | 64.3                           |
| 1-27                | 67.7                           | 2-27                  | 66.7                           |
| 1-29                | 59.3                           | 2-29                  | 70.3                           |
|                     | Mean = 63.3 Stan               | dard Deviation = 5.22 |                                |

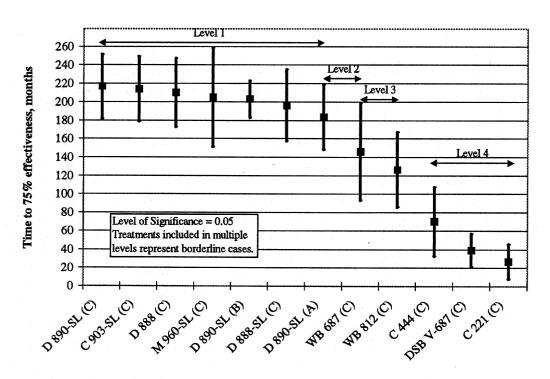



Figure 46. Tukey analysis of estimated transverse joint seal service lives at Mesa, Arizona test site.

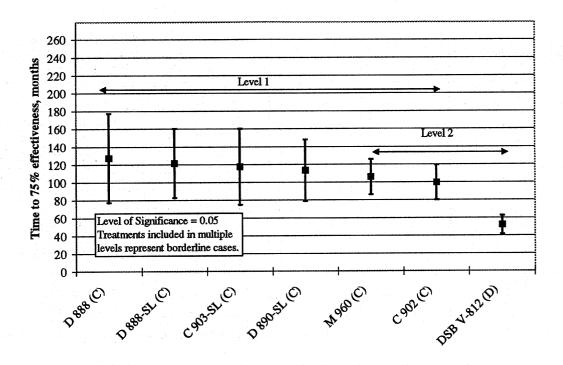



Figure 47. Tukey analysis of estimated transverse joint seal service lives at Wells, Nevada test site.

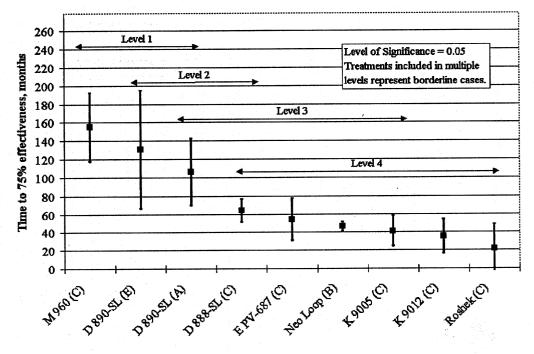



Figure 48. Tukey analysis of estimated transverse joint seal service lives at Tremonton, Utah test site.

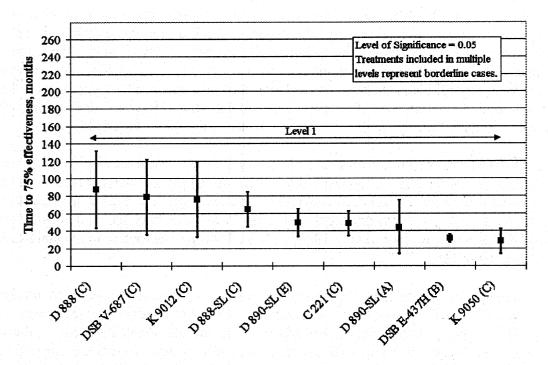



Figure 49. Tukey analysis of estimated transverse joint seal service lives at Salt Lake City, Utah test site.

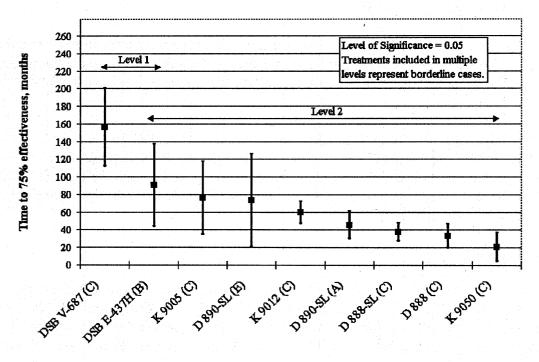



Figure 50. Tukey analysis of estimated transverse joint seal service lives at Heber City, Utah test site.

In general, the Tukey service life groupings reinforce the observations made previously regarding current performance groupings. For instance, at Mesa, the standard silicone seal treatment and five of the six self-leveling silicone seal treatments showed statistically longer service lives than the compression seals and hot-applied seals. The sixth self-leveling silicone seal treatment, Dow 890-SL placed in 3-mm-wide joints, showed a statistically longer service life than the two hot-applied seals and two of the three compression seals. However, this material showed a marginally shorter service life in 3-mm-wide joints than in 6- and 9-mm-wide joints.

Most of the silicone seal treatments at Wells have statistically outperformed the compression seal at that site. Only the Mobay 960 and Crafco 902 seals placed in 9-mm joints showed the same statistical service life as the D.S. Brown V-812 compression seal. Due to the lack of pre-1991 performance data on the polyethylene seal, no estimates of service life could be made for this material. Though it was installed in 1980, it showed 100 percent failure in the initial field inspections of 1994-1995.

At Tremonton, two of the four silicone seals—Mobay 960 in 9-mm-wide conventionally sawed joints and Dow 890-SL in 3-mm-wide Soff-Cut joints—statistically showed longer service lives than the compression seals, hot-applied seals, and the proprietary Roshek seal. A third silicone seal, Dow 890-SL in 3-mm-wide conventionally sawed joints, statistically showed the same estimated service life as the two compression seals and the hot-applied rubberized asphalt product, Koch 9005. The fourth silicone seal, Dow 888-SL, placed in 9-mm-wide conventionally sawed joints, shows no statistical difference in estimated service life when compared to the two compression seals, the two hot-applied seals, and the Roshek seal. Lastly, no statistical differences in estimated service life were found between the Dow 890-SL 3-mm-wide Soff-Cut and conventionally sawed joints, which suggests that the more expeditious Soff-Cut sawing method could be more cost-effective.

As with the results of the Tukey analysis of current performance, no statistical distinctions in estimated service life were found among the treatments at the Salt Lake City site. However, it can again be pointed out that a more cost-effective sawing method than conventional sawcutting is the Soff-Cut method.

At the Heber City site, the D.S. Brown V-687 compression seal showed a statistically longer service life than the silicone seals, hot-applied seals, and the self-leveling polysulfide seal. Moreover, with no statistical differences in estimated service life between the Dow 890-SL 3-mm-wide Soff-Cut and conventionally sawed joints, the more expeditious Soff-Cut sawing method may be economically justifiable.

## Longitudinal Joint Seals

The results of the Tukey analysis of estimated longitudinal joint seal service lives are illustrated in figures 51 and 52. The only statistical distinction in estimated service life at Mesa was between the Crafco RS 221 joint seal treatment (significantly lower service life) and four of the seven silicone seal treatments. Recall that no distinctions were apparent in the evaluation of current performance levels.

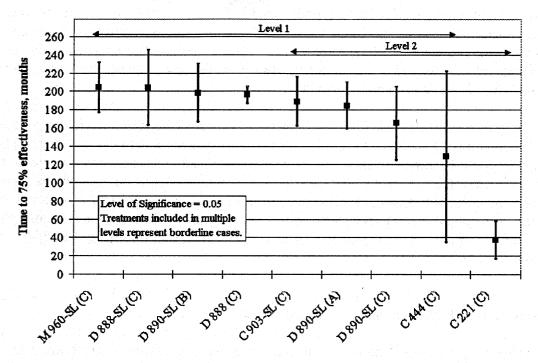



Figure 51. Tukey analysis of estimated longitudinal joint seal service lives at Mesa, Arizona test site.

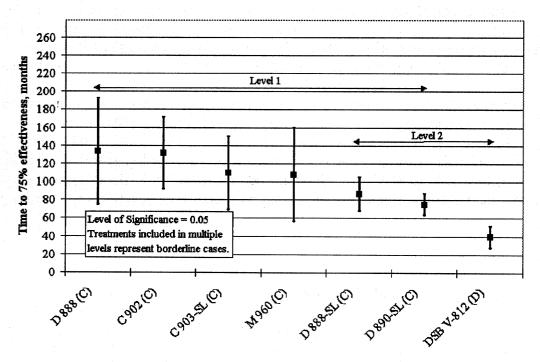



Figure 52. Tukey analysis of estimated longitudinal joint seal service lives at Wells, Nevada test site.

Among the longitudinal joint seal treatments at Wells, it was found that the D.S. Brown V-812 compression seal treatment showed a statistically shorter service life than the three standard silicone treatments installed at that site and one of the three self-leveling silicone treatments. This compression seal showed statistically poorer performance than its counterparts during the 1997-1998 field inspections.

Finally, in figures 46 through 52, it can be seen that some of the joint seal treatments had high standard deviations of estimated service life. Probable factors in these high standard deviations include differences in material quality, sealing workmanship, and joint characteristics (e.g., width and condition, movement) between replicate sections of a given treatment. A good example of this is the Crafco SS 444 placed at the Mesa, Arizona test site. As seen in tables C-2 and C-50 in appendix C, the effectiveness levels over time for the replicate 1 seals were much lower than for the replicate 2 seals, due to the extended heating that occurred with this material during installation.

## Laboratory Test—Field Performance Assessments

Because no statistical distinctions in estimated service life were found among the three non-self-leveling silicones (Dow 888, Mobay 960, and Crafco 902) placed in 9-mm-wide joints at Wells, and because each sealant met the established laboratory test specifications, a clear performance indicator could not be identified. However, the excellent performance of these three sealants at Wells reflects well upon the set of tests conducted (e.g., tensile stress at 150 percent strain, bond to PCC mortar, movement capability and adhesion) and the established test criteria.

With no statistical differences in estimated service life observed among the three self-leveling silicones (Crafco 903-SL, Dow 888-SL, and Dow 890-SL) placed in 9-mm-wide joints at Wells, no evidence could be found that one or more laboratory tests provides clear indications of performance.

Though three of the four self-leveling silicone sealants placed at Mesa did not entirely satisfy the established laboratory test specifications—Crafco 903-SL and Dow 890-SL failed the durometer hardness requirement and Mobay 960-SL failed the movement capability and adhesion requirement—the effect on performance (9-mm-wide joints) has not been apparent. All four sealants, including the Dow 888-SL sealant that met the specifications, showed statistically similar service lives, and the limited failure observed in each sealant has been in the form of full-depth spalling.

# CHAPTER 6. SUMMARY OF FINDINGS AND RECOMMENDATIONS

The SHRP SPS-4 supplemental joint seal experiment represents the interests and desires of selected State highway agencies in determining the most effective and long-lasting materials and methods for sealing joints in their jointed concrete pavements. Six test sites were constructed in four States for this purpose, with each test site containing between 8 and 12 installed combinations of sealant material and joint preparation procedure. Well over 2,000 transverse joints were sealed and performance was monitored as part of the study, and many longitudinal joints were also sealed and evaluated.

The details of the test sites constructed as part of the SHRP SPS-4 supplemental joint seal study were provided in chapters 1 and 2 of this report. An in-depth discussion of the results of laboratory tests performed on some of the experimental materials was provided in chapter 3. Complete documentation of the field performance information collected in the study was given in chapter 4, and the results of various data analyses designed to distinguish treatment performance and cost-effectiveness were presented in chapter 5.

This chapter summarizes the major findings and observations of the SPS-4 supplemental joint seal study. The findings are divided into general findings and specific findings about materials and methods. Also contained in this chapter are various recommendations concerning joint sealing operations that could be useful to highway construction and maintenance administrators, practitioners, and researchers.

#### **Findings**

## General

- At the conclusion of the 1997-1998 field inspections, a significant amount of overall joint seal failure had developed at five of the six SPS-4 supplemental joint seal sites. The overall average failure of treatments at these 5- to 7-year-old sites ranged from 19 to 58 percent of the joint length. At the sixth site, overall joint seal failure was low (approximately 9 percent) because of the young age (2 years) of the treatments.
- Of 56 joint seal treatments placed at the 6 sites, 26 have shown favorable performance (≥80 percent effectiveness), 7 have shown mediocre performance (65 to 79.9 percent effectiveness), 1 has shown poor performance (50 to 64.4 percent effectiveness), and 22 have reached "failed" status (<50 percent effectiveness).

- Joint seal treatments with the longest mean estimated service life at each site were as follows:
  - Mesa (transverse seals): Dow 890-SL in 9-mm-wide joints (218 months).
  - Mesa (longitudinal seals): Mobay 960-SL in 9-mm-wide joints (204 months).
  - Wells (transverse seals): Dow 888 in 9-mm-wide joints (127 months).
  - Wells (longitudinal seals): Dow 888 in 9-mm-wide joints (134 months).
  - Tremonton (transverse seals): Mobay 960 in 9-mm-wide joints (155 months).
  - Salt Lake City (transverse seals): Dow 888 in 9-mm-wide joints (88 months).
  - Heber City (transverse seals): D.S. Brown V-687 in 9-mm-wide joints (158 months).
- Poor construction practices, such as overheating and extended heating of hot-applied sealants, placement of silicone seals too thin or too high in the joint, and hand installation of compression seals, have affected the performance of several joint seal treatments.
- Despite large variations in performance among the transverse joint seal treatments at Salt Lake City and Heber City, and the longitudinal joint seal treatments at Mesa, the results of Tukey groupings do not indicate statistical differences in performance among the treatments at each of these sites. A probable explanation of this phenomenon for the Heber City site is that substantially different joint cleaning intensities were used during the installation of replicate sections (i.e., joints in the eastbound test sections received higher waterblast and airblast pressures than joints in the westbound test sections).
- Because of limited laboratory testing and an overall lack of statistical performance differences among sealant materials, no significant relationships were identified between field performance indicators and laboratory-determined material properties.

## **Materials**

Although some of the combinations of material and configuration were installed at multiple sites, the fact that joint cleaning procedures varied from site to site limited the development of broad-based conclusions about the performance of materials. Thus, the findings presented in this section are site-specific.

• Among the seals placed in 9-mm-wide transverse joints at the Mesa site, superior performance has been provided by the one standard silicone (Dow 888) and the four self-leveling silicones (Dow 890-SL, Crafco 903-SL, Mobay 960-SL, and Dow 888-SL). Each had statistically longer estimated service lives than those of competing seals. Two preformed compression seals (Watson Bowman 687 and Watson Bowman 812) at this site showed good performance and, consequently, had statistically longer service lives than the two hot-applied seals (Crafco SS 444, which incurred substantial cohesion failure as a result of extended heating or overheating during installation, and Crafco RS 221) and a third compression seal (D.S. Brown V-687).

- Three of the five silicone seals (Dow 888, Mobay 960-SL, and Dow 888-SL) placed in 9-mm-wide longitudinal joints at Mesa showed statistically longer service lives than did the hot-applied rubberized asphalt seal (Crafco RS 221). However, despite considerable cohesive failure in the Crafco SS 444 as a result of extended heating or overheating during installation, all five silicone seals showed statistically the same service lives as Crafco SS 444.
- At the Campo test site, no statistical differences were observed in the 2-year performance levels of the three seals (Crafco 903-SL self-leveling silicone seal, Crafco 902 standard silicone seal, and D.S. Brown V-687 compression seal) placed in 9-mm-wide transverse joints, despite the fact that the compression seal was poorly installed. However, the Crafco 903-SL and Crafco 902 seals placed in 6-mm-wide joints did show statistically longer service lives than that of a second compression seal (D.S. Brown E-437H) that was poorly installed in 6-mm-wide joints.
- No statistical differences in estimated service life were found to exist among the three standard silicone seals (Dow 888, Mobay 960, and Crafco 902) and three self-leveling silicone seals (Dow 888-SL, Crafco 903-SL, and Dow 890-SL) placed in 9-mm-wide transverse joints at the Wells site.
- At the Tremonton site, superior performance was provided by the Mobay 960 standard silicone. The estimated service life of this seal placed in 9-mm-wide joints was statistically longer than the estimated service lives of five similarly placed seals (Dow 888-SL self-leveling silicone, Esco PV-687 preformed compression seal, Koch 9005 hot-applied rubberized asphalt, Koch 9012 hot-applied PVC-coal tar, and Roshek proprietary sealant). Though construction problems are believed to have significantly affected the performance characteristics of the Esco PV-687 and Koch 9012 seals, their estimated service lives were statistically the same as the Dow 888-SL, Koch 9005, and Roshek seals.
- No statistical differences in estimated service life were observed among six different sealants (Dow 888 standard silicone, D.S. Brown V-687 preformed compression seal, Koch 9012 hot-applied PVC-coal tar, Dow 888-SL self-leveling silicone, Crafco RS 221 hot-applied rubberized asphalt, and Koch 9050-SL self-leveling polysulfide) placed in 9-mm-wide transverse joints at the Salt Lake City site. Some of these seals, such as Koch 9012 and Crafco RS 221, were reported to have had construction difficulties.
- At the Heber City site, superior performance was provided by the D.S. Brown V-687 preformed compression seal. The estimated service life of this seal placed in 9-mm-wide joints was statistically longer than the estimated service lives of five similarly placed seals (Koch 9005 hot-applied rubberized asphalt, Koch 9012 hot-applied PVC-coal tar, Dow 888-SL self-leveling silicone, Dow 888 standard silicone, and Koch 9050-SL self-leveling polysulfide).

## Configurations

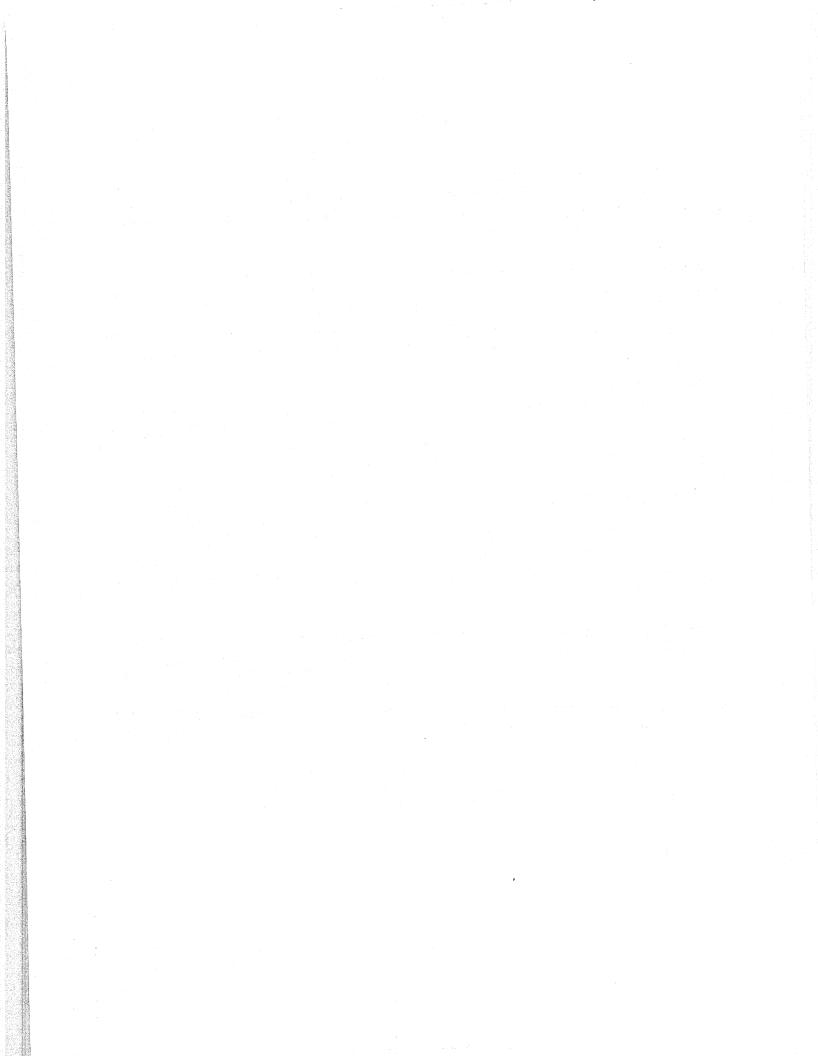
- At the Mesa site, no statistical differences in estimated service life were observed among the 3-, 6-, and 9-mm-wide transverse joints sealed with Dow 890-SL self-leveling silicone. Likewise, no statistical differences in estimated service life were observed among the 3-, 6-, and 9-mm-wide longitudinal joints sealed with Dow 890-SL self-leveling silicone.
- At the Campo site, no statistical differences in the 2-year performance levels were observed among the 3-, 6-, and 9-mm-wide transverse joints sealed with Crafco 903-SL self-leveling silicone. In addition, no statistical differences in the 2-year performance levels were observed among the 3-, 6-, 9-mm, and beveled 9-mm-wide transverse joints sealed with Crafco 902 standard silicone.
- At the Tremonton site, no statistical differences in estimated service life were observed among the 3-mm Soff-Cut-sawed and conventionally sawed transverse joints sealed with Dow 890-SL self-leveling silicone.
- No statistical differences in estimated service life were observed among the 3-mm Soff-Cut-sawed and conventionally sawed transverse joints sealed with Dow 890-SL at the Salt Lake City site.
- Like the Tremonton and Salt Lake City sites, no statistical differences in estimated service life were observed among the 3-mm Soff-Cut-sawed and conventionally sawed transverse joints sealed with Dow 890-SL at the Heber City site.

#### Recommendations

Recommendations are provided below for both the designer/operator of joint sealing projects and the planner/researcher for joint sealing policies.

## Joint Sealing Operations

All joint sealing recommendations are based on available performance data and on experience with test site installation.


- Long-term (>8 years) initial joint seal performance can generally be obtained using standard and self-leveling silicone materials (e.g., Dow 888, Mobay 960, Crafco 902, Dow 890-SL, Mobay 960-SL, and Crafco 903-SL) properly placed in thoroughly cleaned 9-mm-wide joints.
- Long-term performance similar to the standard and self-leveling silicone seal types can
  also be achieved using Dow 890-SL properly placed in thoroughly cleaned 3- or
  6-mm-wide joints. Since less material is required for these narrower joints, these seals
  may be more cost-effective.

- Similar long-term performance capabilities achieved by Dow 890-SL placed in 3-mm conventionally sawed and Soff-Cut-sawed joints suggest that the more expeditious Soff-Cut method would be more cost-effective than the conventional sawing method.
- Although long-term initial joint seal performance is obtainable with preformed compression seals, such as Watson Bowman 687 and D.S. Brown V-687, proper joint design and seal installation are critical.
- Hot-applied sealants (e.g., Crafco RS 221, Koch 9012) placed in 9-mm-wide joints are likely to provide moderate performance (4 to 8 years) if they are properly heated and are installed in thoroughly cleaned joints. Though their service lives appear to be substantially shorter than silicone seals and compression seals, their installation costs are considerably less, which may make them the most cost-effective option.

## **Education and Research**

The SHRP SPS-4 supplemental joint seal study has taken steps toward improving the state of the practice of sealing joints in concrete pavements. Recommendations for actions in research and education that may lead to further progress in joint resealing are as follows:

- Continue monitoring the SPS-4 supplemental joint seal test sites. The Mesa, Wells, and Campo sites, in particular, have many joint seal treatments with less than 25 percent overall failure. Most of the treatments with less than 25 percent overall failure are standard and self-leveling silicones. Additional time-series effectiveness data will likely enable further distinctions to be made regarding the performance of these materials and some of the preformed compression seals.
- Promote the design and construction of additional joint seal test sites. Because many new advancements in materials and equipment have occurred since the installations of the six SPS-4 supplemental joint seal test sites, it is highly recommended that agencies conduct their own customized joint seal experiments. The materials and methods commonly used by agency crews should be evaluated against the various materials and methods shown to be effective in the SPS-4 supplemental joint seal study. New or promising technologies should be included in the experiments.
- Transfer the technology. The information gathered under the SPS-4 supplemental joint seal experiment can be put to its best use when it reaches the most people on the decisionmaking, supervisory, and installation levels of joint sealing operations. Therefore, continued incorporation of this study's results into technology transfer programs is essential.



## REFERENCES

Ambroz, J.K. and L.D. Evans. 1996. Construction Report for Campo, Colorado SHRP SPS-4 Experiment 08A400, Federal Highway Administration (FHWA) Contract No. DTFH61-93-R-00051, FHWA, McLean, Virginia.

Evans, L.D., C.A. Good Mojab, A.J. Patel, A.R. Romine, K.L. Smith, and T.P. Wilson. 1992. SHRP H-106 Evaluation and Analysis Plan (EAP), SHRP Contract No. SHRP-89-H-106, SHRP, National Research Council, Washington, D.C.

Evans, L.D., M.A. Pozsgay, K.L. Smith, and A.R. Romine. 1999. LTPP Pavement Maintenance Materials: SHRP Joint Reseal Experiment, Final Report, Federal Highway Administration, Washington, D.C.

Evans, L.D. and C.J. Wienrank. 1995a. *Draft Construction Report for Wells, Nevada SHRP SPS-4 Experiment 32A400*, FHWA Contract No. DTFH61-93-R-00051, FHWA, McLean, Virginia.

Evans, L.D. and C.J. Wienrank. 1995b. *Draft Construction Report for Tremonton, Utah SHRP SPS-4 Experiment 49C400*, FHWA Contract No. DTFH61-93-R-00051, FHWA, McLean, Virginia.

Evans, L.D. and C.J. Wienrank. 1995c. *Draft Construction Report for Salt Lake City, Utah SHRP SPS-4 Experiment 49D400*, FHWA Contract No. DTFH61-93-R-00051, FHWA, McLean, Virginia.

Evans, L.D. and C.J. Wienrank. 1995d. *Draft Construction Report for Heber City, Utah SHRP SPS-4 Experiment 49E400*, FHWA Contract No. DTFH61-93-R-00051, FHWA, McLean, Virginia.

Meier, W.R. and E.J. Elnicky. 1992. Construction Report for Arizona's SHRP SPS-4 Experiment, Report No. AZ92-377-1, Arizona Department of Transportation, Phoenix, Arizona.

U.S. Department of Commerce. 1983. Climatic Atlas of the United States. U.S. Dept. of Commerce, Environmental Science Services Administration.

| Į,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|-----|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |     |
| Princes administra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |     |
| SCHOOL STATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |     |
| reposition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |     |
| and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |     |
| 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |     |
| Calculate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |     |
| A STATE OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  | 3/2 |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |     |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |     |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |     |
| and the same                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |     |
| Politice in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |     |
| 2000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  | i i |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |     |
| Selection.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |     |
| No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |     |
| 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |     |
| H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |     |
| The State of the S |  |     |
| Control Proc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |     |
| Market Co.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |     |

# APPENDIX A. TEST SITE LAYOUTS

The SHRP SPS-4 supplemental joint seal test sites were laid out in two replicates. These replicates were established in adjacent, opposing lanes at the three Utah sites. However, at the Mesa, Arizona; Campo, Colorado; and Wells, Nevada test sites, the replicates were placed end-to-end. The order of sealant placement at each test site was chosen randomly. Tables A-1 through A-6 list the combinations of sealant material and joint configuration used at each site in the order that they lie along the roadway.

Table A-1. Layout of test sections at the Mesa, Arizona test site.

| Replicate No.  | Test Section No.<br>(SHRP ID) | Sealant<br>Material                           | Joint<br>Configuration |
|----------------|-------------------------------|-----------------------------------------------|------------------------|
|                | 13 (04A451)                   | Dow 890-SL self-leveling silicone             | Α                      |
|                | 14 (04A452)                   | D.S. Brown V-687 compression seal             | C                      |
|                | 15 (04A453)                   | Dow 888 non-sag silicone                      | C                      |
|                | 16 (04A454)                   | Mobay Baysilone 960-SL self-leveling silicone | C                      |
| 이 유럽하다         | 17 (04A455)                   | Unsealed                                      | A                      |
| 2ª             | 18 (04A456)                   | Dow 890-SL self-leveling silicone             | C                      |
| 2              | 19 (04A457)                   | Dow 888-SL self-leveling silicone             | C                      |
|                | 20 (04A458)                   | Crafco 903-SL self-leveling silicone          | C                      |
|                | 21 (04A459)                   | Crafco RS 221 hot-applied rubberized asphalt  | C                      |
|                | 22 (04A460)                   | Watson Bowman 812 compression seal            | <b>C</b>               |
|                | 23 (04A461)                   | Crafco SS 444 hot-applied PVC-coal tar        | C - B                  |
|                | 24 (04A462)                   | Dow 890-SL self-leveling silicone             | В                      |
|                | 01 (04A441)                   | D.S. Brown V-687 compression seal             | C                      |
|                | 02 (04A410)                   | Crafco 903-SL self-leveling silicone          | С                      |
|                | 03 (04A430)                   | Unsealed                                      | Α                      |
|                | 04 (04A442)                   | Dow 890-SL self-leveling silicone             | С                      |
|                | 05 (04A443)                   | Watson Bowman 687 compression seal            | С                      |
| 1 <sup>b</sup> | 06 (04A444)                   | Dow 888-SL self-leveling silicone             | С                      |
|                | 07 (04A445)                   | Dow 888 non-sag silicone                      | С                      |
|                | 08 (04A446)                   | Crafco SS 444 hot-applied PVC-coal tar        | С                      |
|                | 09 (04A447)                   | Dow 890-SL self-leveling silicone             | Α                      |
|                | 10 (04A448)                   | Mobay Baysilone 960-SL self-leveling silicone | С                      |
|                | 11 (04A449)                   | Crafco RS 221 hot-applied rubberized asphalt  | С                      |
|                | 12 (04A450)                   | Dow 890-SL self-leveling silicone             | В                      |

<sup>&</sup>lt;sup>a</sup> Replicate located in eastbound travel lane. Replicate begins with Section 13 at milepost 16.90 and ends with Section 24 at milepost 17.78.

Replicate located in eastbound travel lane. Replicate begins with Section 1 at milepost 18.15 and ends with Section 12 at milepost 18.90.

Table A-2. Layout of test sections at the Campo, Colorado test site.

| Replicate<br>No. | Test Section No.<br>(SHRP ID) | Sealant<br>Material                     | Joint<br>Configuration |
|------------------|-------------------------------|-----------------------------------------|------------------------|
|                  | 10B (08A416)                  | Crafco RS 902 non-sag silicone          | G                      |
|                  | 9B (08A455)                   | Crafco RS 902 non-sag silicone          | , 1 C                  |
|                  | 8B (08A446)                   | Crafco RS 903-SL self-leveling silicone | C                      |
|                  | 7B (08A415)                   | Crafco RS 902 non-sag silicone          | C                      |
| 2ª               | 5B (08A445)                   | Crafco RS 903-SL self-leveling silicone | В                      |
|                  | 4B (08A414)                   | Crafco RS 902 non-sag silicone          | В                      |
|                  | 3B (08A444)                   | Crafco RS 903-SL self-leveling silicone | A                      |
|                  | 2B (08A413)                   | Crafco RS 902 non-sag silicone          | A                      |
|                  | 1B (08A431)                   | Unsealed                                | A                      |
|                  | 10A (08A453)                  | Crafco RS 902 non-sag silicone          | G                      |
|                  | 9A (08A452)                   | D.S. Brown V-687 compression seal       | C                      |
|                  | 8A (08A443)                   | Crafco RS 903-SL self-leveling silicone | С                      |
|                  | 7A (08A412)                   | Crafco RS 902 non-sag silicone          | C                      |
| 1 <sup>b</sup>   | 6A (08A451)                   | D.S. Brown E-437H compression seal      | В                      |
|                  | 5A (08A442)                   | Crafco RS 903-SL self-leveling silicone | В                      |
|                  | 4A (08A411)                   | Crafco RS 902 non-sag silicone          | В                      |
|                  | 3A (08A441)                   | Crafco RS 903-SL self-leveling silicone | A                      |
|                  | 2A (08A410)                   | Crafco RS 902 non-sag silicone          | A                      |
|                  | 1A (08A430)                   | Unsealed                                | A                      |

<sup>a</sup> Replicate located in northbound lane. Replicate begins with Section 10B at milepost 3.90 and ends with Section 1B at milepost 4.60.

Replicate located in northbound lane. Replicate begins with Section 10A at milepost 4.66 and ends with Section 1A at milepost 5.30.

Table A-3. Layout of test sections at the Wells, Nevada test site.

| Replicate No.  | Test Section No.<br>(SHRP ID)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sealant<br>Material                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Joint<br>Configuration |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
|                | 1 (323010)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Polyethylene (existing GPS left undisturbed)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | F                      |
| CIIDD          | 2 (32A420)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Dow 888 non-sag silicone (undersealing test section)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | С                      |
| SHRP*          | 3 (32A410)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Dow 888 non-sag silicone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | С                      |
|                | 4 (32A430)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Unsealed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | С                      |
|                | 5-1 (32A451)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (SHRP ID)Material1 (323010)Polyethylene (existing GPS left undisturbed)2 (32A420)Dow 888 non-sag silicone (undersealing test section3 (32A410)Dow 888 non-sag silicone4 (32A430)Unsealed5-1 (32A451)Dow 890-SL self-leveling silicone6-1 (32A452)Crafco RS 903-SL self-leveling silicone7-1 (32A453)Dow 888-SL self-leveling silicone8-1 (32A454)D.S. Brown V-812 compression seal9-1 (32A455)Mobay Baysilone 960 non-sag silicone10-1 (32A456)Crafco RS 902 non-sag silicone11-1 (32A457)Dow 888 non-sag silicone5-2 (32A458)Dow 890-SL self-leveling silicone6-2 (32A459)Crafco RS 903-SL self-leveling silicone7-2 (32A460)Dow 888-SL self-leveling silicone8-2 (32A461)D.S. Brown V-812 compression seal9-2 (32A462)Mobay Baysilone 960 non-sag silicone10-2 (32A463)Crafco RS 902 non-sag silicone | С                      |
| 1 <sup>b</sup> | 6-1 (32A452)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Crafco RS 903-SL self-leveling silicone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | С                      |
|                | 7-1 (32A453)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Dow 888-SL self-leveling silicone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | С                      |
|                | 8-1 (32A454)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D.S. Brown V-812 compression seal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D                      |
|                | 9-1 (32A455)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mobay Baysilone 960 non-sag silicone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | С                      |
|                | (SHRP ID)         Material           1 (323010)         Polyethylene (existing GPS left undisturbed)           2 (32A420)         Dow 888 non-sag silicone (undersealing test section)           3 (32A410)         Dow 888 non-sag silicone           4 (32A430)         Unsealed           5-1 (32A451)         Dow 890-SL self-leveling silicone           6-1 (32A452)         Crafco RS 903-SL self-leveling silicone           7-1 (32A453)         Dow 888-SL self-leveling silicone           8-1 (32A454)         D.S. Brown V-812 compression seal           9-1 (32A455)         Mobay Baysilone 960 non-sag silicone           10-1 (32A456)         Crafco RS 902 non-sag silicone           11-1 (32A457)         Dow 888 non-sag silicone           5-2 (32A458)         Dow 890-SL self-leveling silicone           6-2 (32A459)         Crafco RS 903-SL self-leveling silicone           7-2 (32A460)         Dow 888-SL self-leveling silicone           8-2 (32A461)         D.S. Brown V-812 compression seal           9-2 (32A462)         Mobay Baysilone 960 non-sag silicone | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        |
|                | 11-1 (32A457)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Dow 888 non-sag silicone  A430)  Unsealed  A451)  Dow 890-SL self-leveling silicone  A452)  Crafco RS 903-SL self-leveling silicone  A453)  Dow 888-SL self-leveling silicone  A454)  D.S. Brown V-812 compression seal  A455)  Mobay Baysilone 960 non-sag silicone  CA456)  Crafco RS 902 non-sag silicone  CA457)  Dow 888 non-sag silicone  CA458)  Dow 890-SL self-leveling silicone  A459)  Crafco RS 903-SL self-leveling silicone  A460)  Dow 888-SL self-leveling silicone  A461)  D.S. Brown V-812 compression seal  A462)  Mobay Baysilone 960 non-sag silicone                                                                                                                                                                                                                              | С                      |
|                | 5-2 (32A458)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Dow 890-SL self-leveling silicone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | С                      |
|                | 6-2 (32A459)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Crafco RS 903-SL self-leveling silicone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | С                      |
| 2° [           | 7-2 (32A460)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Dow 888-SL self-leveling silicone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | С                      |
|                | 8-2 (32A461)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D.S. Brown V-812 compression seal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D                      |
|                | 9-2 (32A462)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mobay Baysilone 960 non-sag silicone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | С                      |
|                | 10-2 (32A463)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | С                      |
|                | 11-2 (32A464)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Dow 888 non-sag silicone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | С                      |

SHRP replicate located in westbound driving lane. SHRP replicate begins at milepost 348.56 and ends at milepost 348.07.

Replicate located in eastbound lane. Replicate begins with Section 5-1 at milepost 348.06 and ends with Section 11-1 at milepost 348.36.

e Replicate located in eastbound lane. Replicate begins with Section 5-2 at milepost 348.37 and ends with Section 11-2 at milepost 348.67.

Table A-4. Layout of test sections at the Tremonton, Utah test site.

| Replicate<br>No. | Test Section No.<br>(SHRP ID) | Sealant<br>Material                      | Joint<br>Configuration |
|------------------|-------------------------------|------------------------------------------|------------------------|
|                  | 1 (49C440)                    | Koch 9012 hot-applied PVC-coal tar       | С                      |
| 26.7             | 2 (49C441)                    | Koch 9005 hot-applied rubberized asphalt | C                      |
|                  | 3 (49C410)                    | Dow 888-SL self-leveling silicone        | С                      |
| 1ª               | 4 (49C430)                    | Unsealed                                 | A                      |
|                  | 5 (49C443)                    | Mobay Baysilone 960 non-sag silicone     | С                      |
| 1ª               | 6 (49C444)                    | Esco PV 687 compression seal             | С                      |
|                  | 7 (49C445)                    | Kold Seal Neo Loop compression seal      | В                      |
|                  | 8 (49C446)                    | Dow 890-SL self-leveling silicone        | <b>A</b>               |
|                  | 9 (49C447)                    | Mobay Baysilone 960 non-sag silicone     | С                      |
|                  | 10 (49C456)                   | Dow 890-SL self-leveling silicone        | Е                      |
|                  | 11 (49C457)                   | Sealant supplied by Mike Roshek          | С                      |
|                  | 12 (49C458)                   | Unsealed                                 | Е                      |
|                  | 13 (49C448)                   | Koch 9005 hot-applied rubberized asphalt | C                      |
|                  | 14 (49C449)                   | Esco PV 687 compression seal             | C                      |
|                  | 15 (49C450)                   | Kold Seal Neo Loop compression seal      | В                      |
| 2 <sup>b</sup>   | 16 (49C451)                   | Mobay Baysilone 960 non-sag silicone     | С                      |
|                  | 17 (49C452)                   | Koch 9012 hot-applied PVC-coal tar       | С                      |
|                  | 18 (49C431)                   | Unsealed                                 | (5) A A                |
|                  | 19 (49C453)                   | Mobay Baysilone 960 non-sag silicone     | С                      |
|                  | 20 (49C454)                   | Dow 890-SL self-leveling silicone        | A                      |
|                  | 21 (49C455)                   | Dow 888-SL self-leveling silicone        | С                      |

Replicate located in northbound and southbound driving lanes. Replicate begins in northbound lane with Section 1 at milepost 392.95 and extends through Section 9 at milepost 394.15. Replicate continues in southbound lane with Section 10 at milepost 395.09 and ends with Section 12 at milepost 394.82.

Replicate located in southbound lane. Replicate begins with Section 13 at milepost 394.15 and ends with Section 21 at milepost 392.95.

Table A-5. Layout of test sections at the Salt Lake City, Utah test site.

| Replicate<br>No. | Test Section No.<br>(SHRP ID) | Sealant<br><u>Material</u>                   | Joint<br>Configuration |
|------------------|-------------------------------|----------------------------------------------|------------------------|
|                  | 1 (49D430)                    | Unsealed                                     | Α                      |
|                  | 2 (49D410)                    | Dow 888-SL self-leveling silicone            | С                      |
|                  | 3 (49D443)                    | Dow 888 non-sag silicone                     | C                      |
| 1                | 4 (49D444)                    | D.S. Brown V-687 compression seal            | С                      |
|                  | 5 (49D441)                    | Crafco RS 221 hot-applied rubberized asphalt | C                      |
| 18               | 6 (49D446)                    | Dow 890-SL self-leveling silicone            | A                      |
|                  | 7 (49D440)                    | Koch 9012 hot-applied PVC-coal tar           | С                      |
|                  | 8 (49D445)                    | D.S. Brown E-437H compression seal           | В                      |
|                  | 9 (49D461)                    | Koch 9050-SL self-leveling polysulfide       | С                      |
|                  | 10 (49D456)                   | Dow 890-SL self-leveling silicone            | Е                      |
|                  | 11 (49D458)                   | Unsealed                                     | Е                      |
|                  | 22 (49D460)                   | Unsealed                                     | Е                      |
|                  | 21 (49D459)                   | Dow 890-SL self-leveling silicone            | Е                      |
|                  | 20 (49D462)                   | Koch 9050-SL self-leveling polysulfide       | С                      |
|                  | 19 (49D450)                   | D.S. Brown E-437H compression seal           | В                      |
|                  | 18 (49D452)                   | Koch 9012 hot-applied PVC-coal tar           | С                      |
| 2 <sup>b</sup>   | 17 (49D454)                   | Dow 890-SL self-leveling silicone            | A                      |
|                  | 16 (49D448)                   | Crafco RS 221 hot-applied rubberized asphalt | С                      |
|                  | 15 (49D449)                   | D.S. Brown V-687 compression seal            | C                      |
|                  | 14 (49D451)                   | Dow 888 non-sag silicone                     | С                      |
|                  | 13 (49D455)                   | Dow 888-SL self-leveling silicone            | C                      |
|                  | 12 (49D431)                   | Unsealed                                     | A                      |

Replicate located in southbound lanes. Replicate begins with Section 1 at station 121+00 and ends with Section 11 at station 168+00.

Replicate located in northbound lanes. Replicate begins with Section 22 at station 168+00 and ends with Section 12 at station 121+00.

Table A-6. Layout of test sections at the Heber City, Utah test site.

| Replicate<br>No. | Test Section No.<br>(SHRP ID) | Sealant<br>Material                      | Joint<br>Configuration |
|------------------|-------------------------------|------------------------------------------|------------------------|
| 1ª               | 1 (49E460)                    | Unsealed                                 | Е                      |
|                  | 2 (49E459)                    | Dow 890-SL self-leveling silicone        | Е                      |
|                  | 3 (49E462)                    | Koch 9050-SL self-leveling polysulfide   | C                      |
|                  | 4 (49E449)                    | D.S. Brown V-687 compression seal        | C                      |
|                  | 5 (49E448)                    | Koch 9005 hot-applied rubberized asphalt | С                      |
|                  | 6 (49E450)                    | D.S. Brown E-437 H compression seal      | В                      |
|                  | 7 (49E454)                    | Dow 890-SL self-leveling silicone        | A                      |
|                  | 8 (49E452)                    | Koch 9012 hot-applied PVC-coal tar       | C                      |
|                  | 9 (49E451)                    | Dow 888 non-sag silicone                 | С                      |
|                  | 10 (49E455)                   | Dow 888-SL self-leveling silicone        | С                      |
|                  | 11 (49E431)                   | Unsealed                                 | A                      |
| 2ь               | 12 (49E430)                   | Unsealed                                 | Α                      |
|                  | 13 (49E410)                   | Dow 888-SL self-leveling silicone        | C                      |
|                  | 14 (49E443)                   | Dow 888 non-sag silicone                 | C                      |
|                  | 15 (49E441)                   | Koch 9005 hot-applied rubberized asphalt | C                      |
|                  | 16 (49E444)                   | D.S. Brown V-687 compression seal        | C                      |
|                  | 17 (49E446)                   | Dow 890-SL self-leveling silicone        | A                      |
|                  | 18 (49E440)                   | Koch 9012 hot-applied PVC-coal tar       | С                      |
|                  | 19 (49E445)                   | D.S. Brown E-437 H compression seal      | В                      |
| a a see          | 20 (49E461)                   | Koch 9050-SL self-leveling polysulfide   | С                      |
|                  | 21 (49E456)                   | Dow 890-SL self-leveling silicone        | Е                      |
|                  | 22 (49E458)                   | Unsealed                                 | Е                      |

Replicate located in westbound lanes. Replicate begins with Section 1 at station 500+00 and ends with Section 11 at station 444+00.

Replicate located in eastbound lanes. Replicate begins with Section 12 at station 444+00 and ends with Section 22 at station 500+00.

# APPENDIX B. INSTALLATION DATA

During installation of the test sites, several items were documented. These items included sawing and joint dimensions, depth to the top of sealant, and depth to the top of backer rod. Statistical analyses were performed on these data, the complete results of which are presented in this appendix. Tables that are included for each site are as follows:

- Average sawing and joint dimensions.
- Comparison of sawcut widths to specified widths.
- Comparison of depths to top of sealant to specified range.
- Comparison of depths to backer rod to specified range.
- Summary of sealant shape factors.

Table B-1. Average sawing and installation dimensions at Mesa, Arizona (Meier, 1992).

| Section No. | Joint Width, mm  | Joint Depth, mm | Depth to Top of Backer Rod, mm | Depth to Top of Seal, m |  |
|-------------|------------------|-----------------|--------------------------------|-------------------------|--|
|             | 9.6              | 102.4           |                                | 7.0                     |  |
| 2           | 9.8              | 106.8           | 15.0                           | 6.6                     |  |
| 3           |                  |                 | No data, unsealed section      |                         |  |
| 4           | 9.6              | 103.1           | 17.9                           | 7.4                     |  |
| 5           | 9.8              |                 |                                | -                       |  |
| 6           | 6 9.5 105.1 15.5 |                 | 15.5                           | 6.4                     |  |
| 7           | 9.6              | 108.0           | 15.7                           | 7.9                     |  |
| 8           | 10.4             | 104.0           | 17.0                           | 7.3                     |  |
| 9           | 5.2              | 106.0           | 16.1                           | 5.7                     |  |
| 10          | 10.2             | 107.1           | 16.8                           | 7.6                     |  |
| 11          | 9.6              | 105.1           | 15.1                           | 4.2                     |  |
| 12          | 11.1             | 105.7           | 18.7                           | 8.0                     |  |
| 13          | 4.8              | 108.2           | 15.4                           | 4.4                     |  |
| 14          | 9.8              | 113.9           |                                | 9.3                     |  |
| 15          | 9.8              | 113.6           | 16.9                           | 8.0                     |  |
| 16          | 9.5              | 113.5           | 15.4                           | 6.1                     |  |
| 17          | 4.2              | <u></u> -       |                                |                         |  |
| 18          | 10.4             | 102.4           | 16.5                           | 7.1                     |  |
| 19          | 10.1             | 107.1           | 17.3                           | 6.0                     |  |
| 20          | 10.7             | 105.5           | 15.8                           | 5.8                     |  |
| 21          | 10.3             | 111.3           | 16.0                           | 4.7                     |  |
| 22          | 9.9              | 95.9            |                                |                         |  |
| 23          | 9.9              | 110.4           | 17.8                           | 4.6                     |  |
| 24          | 7.1              | 107.6           | 14.4                           | 4.8                     |  |

Table B-2. Comparison of sawcut width to specified widths at Mesa, Arizona (Meier, 1992).

|             | Sawcut ' | Width (mm) | Standard De | Standard Deviations for: |         | Percentage Beyond Specified Limits |         |  |
|-------------|----------|------------|-------------|--------------------------|---------|------------------------------------|---------|--|
| Section No. | Mean     | Std. Dev.  | UL          | LL                       | LL      | ÜL                                 | L Total |  |
| 1           | 9.6      | 0.40       | 4.26        | 3.76                     | 0       | 0                                  | 0       |  |
| 2           | 9.8      | 0.62       | 3.00        | 2.08                     | 0.001   | 0.019                              | 0.020   |  |
| 3           |          |            | N           | o data, unsealed         | section |                                    |         |  |
| 4           | 9.6      | 0.41       | 4.14        | 3.62                     | 0       | 0                                  | 0       |  |
| 5           | 9.8      | 0.64       | 2.92        | 2.02                     | 0.002   | 0.022                              | 0.024   |  |
| 6           | 9.5      | 0.00       | Infinity    | Infinity                 | 0       | 0                                  | 0       |  |
| 7           | 9.6      | 0.39       | 4.36        | 3.87                     | 0       | 0                                  | 0       |  |
| 8           | 10.4     | 2.05       | 1.20        | 0.35                     | 0.155   | 0.363                              | 0.518   |  |
| 9           | 5.2      | 0.79       | 4.51        | 0.5                      | 0       | 0.691                              | 0.691   |  |
| 10          | 10.2     | 0.84       | 2.74        | 1.05                     | 0.003   | 0.147                              | 0.150   |  |
| 11          | 9.6      | 0.41       | 4.14        | 3.62                     | 0       | 0                                  | 0       |  |
| 12          | 11.1     | 0.00       | Infinity    | Infinity                 | 0       | 0                                  | 0       |  |
| 13          | 4.8      | 0.92       | 3.46        | 0                        | 0       | 0.500                              | 0.500   |  |
| 14          | 9.8      | 0.58       | 3.15        | 2.36                     | 0.001   | 0.009                              | 0.010   |  |
| 15          | 9.8      | 0.94       | 2.01        | 1.38                     | 0.023   | 0.084                              | 0.107   |  |
| 16          | 9.5      | 0.00       | Infinity    | Infinity                 | 0       | 0                                  | 0       |  |
| 17          | 4.2      | 1.28       | 2.02        | 0.46                     | 0.022   | 0.323                              | 0.345   |  |
| 18          | 10.4     | 1.39       | 1.75        | 0.54                     | 0.040   | 0.295                              | 0.335   |  |
| 19          | 10.1     | 0.83       | 2.63        | 1.20                     | 0.004   | 0.118                              | 0.122   |  |
| 20          | 10.7     | 1.27       | 2.17        | 0.33                     | 0.015   | 0.371                              | 0.386   |  |
| 21          | 10.3     | 0.82       | 2.84        | 1.03                     | 0.002   | 0.152                              | 0.154   |  |
| 22          | 9.9      | 0.72       | 2.76        | 1.66                     | 0.003   | 0.048                              | 0.051   |  |
| 23          | 9.9      | 0.71       | 2.79        | 1.68                     | 0.003   | 0.046                              | 0.049   |  |
| 24          | 7.1      | 1.12       | 2.12        | 0.71                     | 0.017   | 0.239                              | 0.256   |  |

LL=Lower limit: 1.6 mm for sections 9, 13, and 17; 4.8 mm for section 24; 8.0 mm for all other sections. UL=Upper limit: 4.8 mm for sections 9, 13, and 17; 8.0 mm for section 24; 11.1 mm for all other sections.

Table B-3. Comparison of depths to top of sealant to specified range at Mesa, Arizona (Meier, 1992).

|             | Depth to To | p of Seal, mm | Standard Deviations for: |                  | Percentage Beyond Specified Limits |       |       |
|-------------|-------------|---------------|--------------------------|------------------|------------------------------------|-------|-------|
| Section No. | Mean        | Std. Dev.     | .IL                      | UL               | LL                                 | UL    | Total |
| 1           | 7.0         | 1.02          | 0.62                     | 2.50             | 0.268                              | 0.006 | 0.274 |
| 2           | 6.6         | 1.24          | 0.16                     | 2.39             | 0.436                              | 0.008 | 0.444 |
| 3           |             |               | No d                     | ata, unsealed se | ction                              |       |       |
| 4           | 7.4         | 2.03          | 0.52                     | 1.04             | 0.302                              | 0.149 | 0.451 |
| 5           |             |               | No data, Wats            | on Bowman cor    | npression seal                     |       |       |
| 6           | 6.4         | 1.57          | 0                        | 2.02             | 0.500                              | 0.022 | 0.522 |
| 7           | 7.9         | 1.02          | 1.55                     | 1.58             | 0.061                              | 0.057 | 0.118 |
| 8           | 7.3         | 2.24          | 0.43                     | 0.99             | 0.334                              | 0.161 | 0.495 |
| 9           | 5.7         | 1.73          | -0.37                    | 2.21             | 0.644                              | 0.014 | 0.658 |
| 10          | 7.6         | 1.32          | 0.92                     | 1.48             | 0.179                              | 0.069 | 0.248 |
| 11          | 4.2         | 1.37          | -1.57                    | 3.89             | 0.942                              | 0     | 0.942 |
| 12          | 8.0         | 1.42          | 1.16                     | 1.07             | 0.123                              | 0.142 | 0.265 |
| 13          | 4.4         | 2.59          | -0.74                    | 1.96             | 0.770                              | 0.025 | 0.795 |
| 14          | 9.3         | 1.68          | 1.79                     | 0.11             | 0.037                              | 0.456 | 0.493 |
| 15          | 8.0         | 0.99          | 1.67                     | 0.94             | 0.047                              | 0.174 | 0.221 |
| 16          | 6.1         | 1.63          | -0.16                    | 2.11             | 0.564                              | 0.017 | 0.581 |
| 17          |             |               | No d                     | ata, unsealed se | ction                              |       |       |
| 18          | 7.1         | 1.70          | 0.55                     | 1.45             | 0.291                              | 0.074 | 0.365 |
| 19          | 6.0         | 1.30          | -0.23                    | 2.69             | 0.591                              | 0.004 | 0.595 |
| 20          | 5.8         | 1.78          | -0.31                    | 2.10             | 0.622                              | 0.018 | 0.640 |
| 21          | 4.7         | 1.24          | -1.33                    | 3.88             | 0.908                              | Q     | 0.908 |
| 22          |             | No            | data, Watson H           | Bowman compre    | ession seal sect                   | ion   |       |
| 23          | 4.6         | 1.65          | -1.05                    | 2.97             | 0.853                              | 0.001 | 0.854 |
| 24          | 4.8         | 1.32          | -2.54                    | 4.94             | 0.994                              | 0     | 0.994 |

LL=Lower limit of 6.4 mm. UL=Upper limit of 9.5 mm.

Table B-4. Comparison of depths to backer rod to specified range at Mesa, Arizona (Meier, 1992).

|             | Depth to Top of | of Backer Rod, mm | Standard I  | Standard Deviations for: |          | Percentage Beyond Specified Limits |       |  |
|-------------|-----------------|-------------------|-------------|--------------------------|----------|------------------------------------|-------|--|
| Section No. | Mean            | Std. Dev.         | LL          | UL                       | LL       | UL                                 | Total |  |
| 1           |                 |                   | No data, co | ompression seal          | section  |                                    |       |  |
| 2           | 15.0            | 0.91              | 2.50        | 4.44                     | 0.006    | 0                                  | 0.006 |  |
| 3           |                 |                   | No dat      | a, unsealed sect         | ion      |                                    |       |  |
| 4           | 17.9            | 0.97              | 5.39        | 1.18                     | 0        | 0.119                              | 0.119 |  |
| 5           |                 |                   | No data, co | ompression seal          | section  |                                    |       |  |
| 6           | 15.5            | 1.02              | 2.80        | 3.45                     | 0.003    | 0                                  | 0.003 |  |
| 7           | 15.7            | 0.64              | 4.80        | 5.2                      | 0        | 0                                  | 0     |  |
| 8           | 17.0            | 1.19              | 3.57        | 1.74                     | 0        | 0.041                              | 0.041 |  |
| 9           | 16.1            | 1.80              | 1.90        | 1.62                     | 0.029    | 0.053                              | 0.082 |  |
| 10          | 16.8            | 1.12              | 3.75        | 1.93                     | 0        | 0.027                              | 0.027 |  |
| 11          | 15.1            | 1.22              | 1.98        | 3.23                     | 0.024    | 0.001                              | 0.025 |  |
| 12          | 18.7            | 0.84              | 7.12        | 0.45                     | 0        | 0.326                              | 0.326 |  |
| 13          | 15.4            | 2.03              | 1.31        | 1.81                     | 0.095    | 0.035                              | 0.130 |  |
| 14          |                 |                   | No data, co | ompression seal          | section  |                                    |       |  |
| 15          | 16.9            | 0.89              | 4.77        | 2.37                     | 0        | 0.009                              | 0.009 |  |
| 16          | 15.4            | 0.97              | 2.84        | 3.74                     | 0.002    | 0                                  | 0.002 |  |
| 17          |                 |                   | No dat      | a, unsealed sect         | ion      |                                    |       |  |
| 18          | 16.5            | 1.22              | 3.12        | 2.08                     | 0.001    | 0.019                              | 0.020 |  |
| 19          | 17.3            | 1.37              | 3.37        | 1.26                     | 0        | 0.104                              | 0.104 |  |
| 20          | 15.8            | 0.97              | 3.21        | 3.37                     | 0.001    | 0                                  | 0.001 |  |
| 21          | 16.0            | 1.19              | 2.77        | 2.55                     | 0.003    | 0.005                              | 0.008 |  |
| 22          |                 |                   | No data, co | ompression seal          | section. |                                    |       |  |
| 23          | 17.8            | 1.57              | 3.23        | 0.81                     | 0.001    | 0.209                              | 0.210 |  |
| 24          | 14,4            | 1.12              | 1.55        | 4.14                     | 0.061    | 0                                  | 0.061 |  |

LL=Lower limit of 12.7 mm. UL=Upper limit of 19.1 mm.

Table B-5. Summary of sealant shape factors at Mesa, Arizona (Meier, 1992).

| ernana (Assas) est |                         | Shape Factor |                          |  |
|--------------------|-------------------------|--------------|--------------------------|--|
| Section No.        | Mean Standard Deviation |              | Remarks                  |  |
| 1                  |                         |              | Compression seal section |  |
| 2                  | 1.24                    | 0.21         |                          |  |
| 3                  |                         |              | Unsealed section         |  |
| 4                  | 1.07                    | 0.54         |                          |  |
| 5                  |                         |              | Compression seal section |  |
| 6                  | 1.08                    | 0.28         |                          |  |
| 7                  | 1.25                    | 0.26         |                          |  |
| 8                  | 1.10                    | 0.32         |                          |  |
| 9                  | 0.58                    | 0.16         |                          |  |
| 10                 | 1.16                    | 0.24         |                          |  |
| 11                 | 0.93                    | 0.16         |                          |  |
| 12                 | 1.07                    | 0.18         |                          |  |
| 13                 | 0.62                    | 0.32         |                          |  |
| 14                 |                         |              | Compression seal section |  |
| 15                 | 1.17                    | 0.23         |                          |  |
| 16                 | 1.14                    | 0.29         |                          |  |
| 17                 |                         |              | Unsealed section         |  |
| 18                 | 1.13                    | 0.32         |                          |  |
| 19                 | 0.95                    | 0.19         |                          |  |
| 20                 | 1.08                    | 0.20         |                          |  |
| 21                 | 0.91                    | 0.12         |                          |  |
| 22                 | -                       |              | Compression seal section |  |
| 23                 | 0.78                    | 0.13         |                          |  |
| 24                 | 0.61                    | 0.08         |                          |  |

Table B-6. Average sawing and installation dimensions at Campo, Colorado (Ambroz and Evans, 1996).

| Section No.  | Joint Width, mm | Joint Depth, mm | Depth to Top of Backer<br>Rod, mm | Depth to Top of<br>Seal, mm |  |
|--------------|-----------------|-----------------|-----------------------------------|-----------------------------|--|
| 1A (08A430)  | 4.8             |                 |                                   |                             |  |
| 2A (08A410)  | 6.4             |                 | 10.9                              | 5.3                         |  |
| 3A (08A441)  | 4.8             |                 | 10.1                              | 1.5                         |  |
| 4A (08A411)  | 10.4            | 37.8            | 13.7                              | 4.6                         |  |
| 5A (08A442)  | 9.7             | 36.3            | 10.4                              | 2.3                         |  |
| 6A (08A451)  | 9.7             | 37.6            |                                   | 6.1                         |  |
| 7A (08A412)  | 0               | 34.5            | 15.2                              | 7.6                         |  |
| 8A (08A443)  | 9.7             | 34.3            | 13.2                              | 1.0                         |  |
| 9A (08A452)  | 9.7             | 37.1            |                                   | 4.1                         |  |
| 10A (08A453) | 0               | 33.8            | 13.5                              | 7.6                         |  |
| 1B (08A431)  | 4.8             |                 |                                   | 1                           |  |
| 2B (08A413)  | 5.8             |                 | 7.4                               | 3.6                         |  |
| 3B (08A444)  | 6.4             |                 | 12.5                              | 2.3                         |  |
| 4B (08A414)  | 9.7             | 29.0            | 10.7                              | 4.3                         |  |
| 5B (08A445)  | 6.4             | 38.9            | 9.9                               | 5.1                         |  |
| 6B (08A454)  |                 | Tra             | nsition zone                      |                             |  |
| 7B (08A415)  | 9.7             |                 |                                   |                             |  |
| 8B (08A446)  | 9.7             | 39.6            | 13.5                              | 5.1                         |  |
| 9B (08A455)  |                 |                 |                                   |                             |  |
| 10B (08A416) |                 |                 |                                   |                             |  |

Table B-7. Comparison of sawcut widths to specified widths at Campo, Colorado (Ambroz and Evans, 1996).

| Section No.  | Sawcut Width, mm |           | Standard Deviations for: |                 | Percentage Beyond Specified Limits |       |       |
|--------------|------------------|-----------|--------------------------|-----------------|------------------------------------|-------|-------|
|              | Mean             | Std. Dev. | LL                       | UL              | LL                                 | UL    | Total |
| 1A (08A430)  | 4.8              | 0.00      | Infinity                 | Infinity        | 0.0                                | 0.0   | 0.0   |
| 2A (08A410)  | 6.4              | 0.00      | Infinity                 | Infinity        | 0.0                                | 100.0 | 100.0 |
| 3A (08A441)  | 4.8              | 0.00      | Infinity                 | Infinity        | 0.0                                | 0.0   | 0.0   |
| 4A (08A411)  | 10.4             | 1.02      | 5.56                     | -2.44           | 0.0                                | 99.3  | 99.3  |
| 5A (08A442)  | 9.7              | 0.00      | Infinity                 | Infinity        | 0.0                                | 100.0 | 100.0 |
| 6A (08A451)  | 9.7              | 0.00      | Infinity                 | Infinity        | 0.0                                | 100.0 | 100.0 |
| 7A (08A412)  | 12.7             | 0.00      | Infinity                 | Infinity        | 0.0                                | 100.0 | 100.0 |
| 8A (08A443)  | 9.7              | 0.00      | Infinity                 | Infinity        | 0.0                                | 0.0   | 0.0   |
| 9A (08A452)  | 9.7              | 0.00      | Infinity                 | Infinity        | 0.0                                | 0.0   | 0.0   |
| 10A (08A453) | 12.7             | 0.00      | Infinity                 | Infinity        | 0.0                                | 0.0   | 0.0   |
| 1B (08A431)  | 4.8              | 0.00      | Infinity                 | Infinity        | 0.0                                | 0.0   | 0.0   |
| 2B (08A413)  | 5.8              | 0.76      | 5.58                     | -1.42           | 0.0                                | 92.2  | 92.2  |
| 3B (08A444)  | 6.4              | 0.00      | Infinity                 | Infinity        | 0.0                                | 0.0   | 0.0   |
| 4B (08A414)  | 9.7              | 0.00      | Infinity                 | Infinity        | 0.0                                | 0.0   | 0.0   |
| 5B (08A445)  | 6.4              | 0.00      | Infinity                 | Infinity        | 0.0                                | 0.0   | 0.0   |
| 6B (08A454)  |                  |           |                          | Transition sect | ion                                |       |       |
| 7B (08A415)  | 9.7              | 0.00      | Infinity                 | Infinity        | 0.0                                | 0.0   | 0.0   |
| 8B (08A446)  | 9.7              | 0.00      | Infinity                 | Infinity        | 0.0                                | 0.0   | 0.0   |
| 9B (08A455)  |                  |           |                          |                 |                                    |       |       |
| 10B (08A416) | <u></u>          |           |                          |                 |                                    |       |       |

Note: LL and UL are lower limit and upper limit, which are 1.59 mm less than and greater than the specified width, respectively.

Table B-8. Comparison of depths to top of sealant to specified range at Campo, Colorado (Ambroz and Evans, 1996).

| Section No.  | Joint Seal Recess, mm |                           | Standard De | Standard Deviations for: |         | Percentage Beyond Specified Limits |       |  |  |  |
|--------------|-----------------------|---------------------------|-------------|--------------------------|---------|------------------------------------|-------|--|--|--|
|              | Mean                  | Std. Dev.                 | LL          | UL                       | LL      | UL                                 | Total |  |  |  |
| 1A (08A430)  |                       | No data, unsealed section |             |                          |         |                                    |       |  |  |  |
| 2A (08A410)  | 5.3                   | 0.76                      | -1.33       | 5.50                     | 90.8    | 0.0                                | 90.8  |  |  |  |
| 3A (08A441)  | 1.5                   | 1.52                      | -3.17       | 5.25                     | 100.0   | 0.0                                | 100.0 |  |  |  |
| 4A (08A411)  | 4.6                   | 1.02                      | -1.75       | 4.88                     | 96.0    | 0.0                                | 96.0  |  |  |  |
| 5A (08A442)  | 2.3                   | 1.52                      | -2.67       | 4.75                     | 99.6    | 0.0                                | 99.6  |  |  |  |
| 6A (08A451)  | 6.1                   | 3.30                      | -0.08       | 1.04                     | 53.2    | 14.9                               | 68.1  |  |  |  |
| 7A (08A412)  | 7.6                   | 1.27                      | 1.00        | 1.50                     | 15.9    | 6.7                                | 22.6  |  |  |  |
| 8A (08A443)  | 1.0                   | 1.52                      | -3.50       | 5.58                     | 100.0   | 0.0                                | 100.0 |  |  |  |
| 9A (08A452)  | 4.1                   | 4.32                      | -0.53       | 1.26                     | 70.2    | 10.4                               | 80.6  |  |  |  |
| 10A (08A453) | 7.6                   | 2.54                      | 0.50        | 0.80                     | 30.9    | 21.1                               | 52.0  |  |  |  |
| 1B (08A431)  |                       |                           | No          | data, unsealed s         | section |                                    |       |  |  |  |
| 2B (08A413)  | 3.6                   | 1.52                      | -1.83       | 3.92                     | 96.6    | 0.0                                | 96.6  |  |  |  |
| 3B (08A444)  | 2.3                   | 1.52                      | -2.67       | 4.75                     | 99.6    | 0.0                                | 99.6  |  |  |  |
| 4B (08A414)  | 4.3                   | 1.78                      | -1.14       | 2.93                     | 87.3    | 0.2                                | 87.5  |  |  |  |
| 5B (08A445)  | 5.1                   | 1.27                      | -1.00       | 3.50                     | 84.1    | 0.0                                | 84.1  |  |  |  |
| 6B (08A454)  |                       | Transition section        |             |                          |         |                                    |       |  |  |  |
| 7B (08A415)  |                       |                           |             | No data collect          | ted     |                                    |       |  |  |  |
| 8B (08A446)  | 5.1                   | 1.02                      | -1.25       | 4.38                     | 89.4    | 0.0                                | 89.4  |  |  |  |
| 9B (08A455)  |                       |                           |             | No data collect          | ted     |                                    |       |  |  |  |
| 10B (08A416) |                       |                           |             | No data collect          | ted     |                                    |       |  |  |  |

Note: LL and UL are lower limit and upper limit, which are 6.4 mm and 9.5 mm, respectively.

Table B-9. Comparison of depths to backer rod to specified range at Campo, Colorado (Ambroz and Evans, 1996).

| Section No.  | Backer Rod Depth, mm |                           | Standard D | Standard Deviations for: |         | Percentage Beyond Specified Limits |       |  |  |  |
|--------------|----------------------|---------------------------|------------|--------------------------|---------|------------------------------------|-------|--|--|--|
|              | Mean                 | Std. Dev.                 | LL         | UL                       | LL      | UL                                 | Total |  |  |  |
| 1A (08A430)  |                      | No data, unsealed section |            |                          |         |                                    |       |  |  |  |
| 2A (08A410)  | 10.9                 | 1.27                      | -1.40      | 6.40                     | 91.9    | 0.0                                | 91.9  |  |  |  |
| 3A (08A441)  | 10.2                 | 1.02                      | -2.50      | 8.75                     | 99.4    | 0.0                                | 99.4  |  |  |  |
| 4A (08A411)  | 13.7                 | 1.27                      | 0.80       | 4.20                     | 21.2    | 0.0                                | 21.2  |  |  |  |
| 5A (08A442)  | 10.4                 | 1.27                      | -1.80      | 6.80                     | 96.4    | 0.0                                | 96.4  |  |  |  |
| 6A (08A451)  |                      |                           | No         | data, compressi          | on seal |                                    | ****  |  |  |  |
| 7A (08A412)  | 15.2                 | 1.52                      | 1.67       | 2.50                     | 4.8     | 0.6                                | 5.4   |  |  |  |
| 8A (08A443)  | 13.2                 | 1.02                      | 0.50       | 5.75                     | 30.9    | 0.0                                | 30.9  |  |  |  |
| 9A (08A452)  |                      |                           | No         | data, compressi          | on seal |                                    |       |  |  |  |
| 10A (08A453) | 13.5                 | 0.76                      | 1.0        | 7.33                     | 15.9    | 0.0                                | 15.9  |  |  |  |
| 1B (08A431)  |                      |                           | No         | data, unsealed s         | section |                                    |       |  |  |  |
| 2B (08A413)  | 7.4                  | 3.30                      | -1.62      | 3.54                     | 94.7    | 0.0                                | 94.7  |  |  |  |
| 3B (08A444)  | 12,4                 | 2.29                      | -0.11      | 2.89                     | 54.4    | 0.2                                | 54.6  |  |  |  |
| 4B (08A414)  | 10.7                 | 3.30                      | -0.62      | 2.54                     | 73.2    | 0.6                                | 73.8  |  |  |  |
| 5B (08A445)  | 9.9                  | 1.78                      | -1.57      | 5.14                     | 94.2    | 0.0                                | 94.2  |  |  |  |
| 6B (08A454)  |                      |                           |            | Transition secti         | on      |                                    |       |  |  |  |
| 7B (08A415)  |                      |                           |            | No data collect          | ed      |                                    |       |  |  |  |
| 8B (08A446)  | 13.5                 | 1.78                      | 0.43       | 3.14                     | 33.4    | 0.0                                | 33.4  |  |  |  |
| 9B (08A455)  |                      |                           |            | No data collect          | ed      |                                    |       |  |  |  |
| 10B (08A416) |                      |                           |            | No data collect          | ed      |                                    |       |  |  |  |

Note: LL and UL are lower limit and upper limit, which are 12.7 mm and 19.1 mm, respectively.

Table B-10. Summary of sealant shape factors at Campo, Colorado (Ambroz and Evans, 1996).

|              | Shape Factor | (depth/width) |                               |  |  |
|--------------|--------------|---------------|-------------------------------|--|--|
| Section No.  | Required     | Mean          | Remarks                       |  |  |
| 1A (08A430)  |              |               | Unsealed                      |  |  |
| 2A (08A410)  | 2.0          | 0.81          | Wide joints                   |  |  |
| 3A (08A441)  | 2.0          | 1.67          |                               |  |  |
| 4A (08A411)  | 1.0          | 0.83          |                               |  |  |
| 5A (08A442)  | 1.0          | 0.77          |                               |  |  |
| 6A (08A451)  |              |               | Compression seal              |  |  |
| 7A (08A412)  | 0.67         | 0.56          |                               |  |  |
| 8A (08A443)  | 0.67         | 1.25          | Thick sealant                 |  |  |
| 9A (08A452)  |              |               | Compression seal              |  |  |
| 10A (08A453) | 0.67         | 0.32          | Wide joint, thin sealant      |  |  |
| 1B (08A431)  |              |               | Unsealed                      |  |  |
| 2B (08A413)  | 2.0          | 0.5           | Wide joint, thin sealant      |  |  |
| 3B (08A444)  | 2.0          | 1.43          |                               |  |  |
| 4B (08A414)  | 1.0          | 0.77          |                               |  |  |
| 5B (08A445)  | 1.0          | 0.71          |                               |  |  |
| 6B (08A454)  |              |               | Transition section            |  |  |
| 7B (08A415)  | 0.67         |               | Data not collected            |  |  |
| 8B (08A446)  | 0.67         | 0.83          |                               |  |  |
| 9B (08A455)  |              |               | Designed for compression seal |  |  |
| 10B (08A416) |              |               | Designed for compression seal |  |  |

Table B-11. Average sawing and installation dimensions at Wells, Nevada (Wienrank and Evans, 1995a).

| Section No.   | Joint Width, mm | Joint Depth, mm | Depth to Top of Backer<br>Rod, mm | Depth to Top of<br>Seal, mm                                 |  |
|---------------|-----------------|-----------------|-----------------------------------|-------------------------------------------------------------|--|
| 1 (323010)    |                 |                 |                                   | CASTAGE<br>Part of the layer <del>The</del> re is the first |  |
| 2 (32A420)    | 10.0            | 37.2            | 17.5                              | 11.1                                                        |  |
| 3 (32A410)    | 13.0            | 37.2            | 17.5                              | 10.3                                                        |  |
| 4 (32A430)    |                 |                 |                                   |                                                             |  |
| 5-1 (32A451)  | 10.5            | 40.0            | 17.1                              | 7.1                                                         |  |
| 6-1 (32A452)  | 9.7             | 40.5            | 18.3                              | 8.5                                                         |  |
| 7-1 (32A453)  | 10.5            | 40.5            | 16.8                              | 7.8                                                         |  |
| 8-1 (32A454)  | 14.0            | 46.7            |                                   | 10.8                                                        |  |
| 9-1 (32A455)  | 12.7            | 38.7            | 19.5                              | 9.3                                                         |  |
| 10-1 (32A456) | 13.5            | 42.2            | 20.2                              | 8.2                                                         |  |
| 11-1 (32A457) | 10.5            | 39.7            | 20.3                              | 12.2                                                        |  |
| 5-2 (32A458)  | 10.2            | 39.5            | 19.7                              | 8.6                                                         |  |
| 6-2 (32A459)  | 14.0            | 44.9            | 18.1                              | 10.5                                                        |  |
| 7-2 (32A460)  | 9.9             | 40.0            | 16.4                              | 9.5                                                         |  |
| 8-2 (32A461)  | 13.3            | 45.4            |                                   | 11.9                                                        |  |
| 9-2 (32A462)  | 12.4            | 40.6            | 16.4                              | 8.7                                                         |  |
| 10-2 (32A463) | 13.7            | 42.5            | 17.9                              | 8.0                                                         |  |
| 11-2 (32A464) | 9.7             | 38.4            | 19.1                              | 8.4                                                         |  |

Table B-12. Comparison of sawcut widths to specified widths at Wells, Nevada (Wienrank and Evans, 1995a).

| Section No. | Sawcut Width, mm                       |           | Standard Deviations for: |          | Portion 1 | ied Limits |       |
|-------------|----------------------------------------|-----------|--------------------------|----------|-----------|------------|-------|
|             | Mean                                   | Std. Dev. | LL                       | UL       | IL        | UL         | Total |
| 323010      | No data, existing GPS left undisturbed |           |                          |          |           |            |       |
| 32A410      | 13.0                                   | 4.60      | 1.10                     | -0.41    | 0.136     | 0.659      | 0.795 |
| 32A420      | 10.0                                   | 1.07      | 1.93                     | 1.04     | 0.027     | 0.149      | 0.176 |
| 32A430      |                                        |           | No                       | data     |           |            |       |
| 32A451      | 10.5                                   | 1.52      | 1,66                     | 0.41     | 0.049     | 0.341      | 0.390 |
| 32A452      | 9.7                                    | 0.51      | 3.48                     | 2.85     | 0.000     | 0.002      | 0.002 |
| 32A453      | 10.5                                   | 1.52      | 1.66                     | 0.41     | 0.049     | 0.341      | 0.390 |
| 32A454      | 14.0                                   | 1.24      | 2.28                     | 0.25     | 0.011     | 0.401      | 0.412 |
| 32A455      | 12.7                                   | 0.00      | Infinity                 | Infinity | 0.000     | 1.000      | 1.000 |
| 32A456      | 13.5                                   | 1.73      | 3.24                     | -1.39    | 0.001     | 0.918      | 0.919 |
| 32A457      | 10.5                                   | 1.52      | 1.66                     | 0.41     | 0.049     | 0.341      | 0.390 |
| 32A458      | 10.2                                   | 1.35      | 1.66                     | 0.71     | 0.049     | 0.239      | 0.288 |
| 32A459      | 10.2                                   | 1.40      | 1.64                     | 0.63     | 0.051     | 0.264      | 0.315 |
| 32A460      | 9.9                                    | 1.02      | 1.90                     | 1.26     | 0.029     | 0.104      | 0.133 |
| 32A461      | 13.3                                   | 0.81      | 2.71                     | 1.16     | 0.003     | 0.123      | 0.126 |
| 32A462      | 12.4                                   | 1.02      | 4.43                     | -1.26    | 0.000     | 0.896      | 0.896 |
| 32A463      | 13.7                                   | 1.70      | 3.35                     | -1.49    | 0.001     | 0.932      | 0.933 |
| 32A464      | 9.7                                    | 0.51      | 3.48                     | 2.85     | 0.000     | 0.002      | 0.002 |

Note: LL and UL are lower limit and upper limit, which are 1.59 mm less than and greater than the specified width, respectively.

Table B-13. Comparison of depths to top of sealant to specified range at Wells, Nevada (Wienrank and Evans, 1995a).

| Section<br>No. | Depth to Top of                        | Standard 1 | Deviations    | Portion Beyond Specified Limits |       |       |       |  |  |  |  |
|----------------|----------------------------------------|------------|---------------|---------------------------------|-------|-------|-------|--|--|--|--|
|                | Mean                                   | Std. Dev.  | LL            | UL                              | LL    | UL    | Total |  |  |  |  |
| 323010         | No data, existing GPS left undisturbed |            |               |                                 |       |       |       |  |  |  |  |
| 32A410         | 10.3                                   | 1.91       | 2.09          | -0.42                           | 0.018 | 0.663 | 0.681 |  |  |  |  |
| 32A420         | 11.1                                   | 3.18       | 1.50          | -0.50                           | 0.067 | 0.692 | 0.759 |  |  |  |  |
| 32A430         |                                        |            | No data, unse | aled section                    |       |       |       |  |  |  |  |
| 32A451         | 7.1                                    | 2.97       | 0.24          | 0.83                            | 0.405 | 0.203 | 0.608 |  |  |  |  |
| 32A452         | 8.5                                    | 4.34       | 0.49          | 0.24                            | 0.312 | 0.405 | 0.717 |  |  |  |  |
| 32A453         | 7.8                                    | 3.51       | 0.40          | 0.50                            | 0.345 | 0.309 | 0.654 |  |  |  |  |
| 32A454         | 10.8                                   | 2.08       | 2.13          | -0.61                           | 0.017 | 0.729 | 0.746 |  |  |  |  |
| 32A455         | 9.3                                    | 1.57       | 1.89          | 0.13                            | 0.029 | 0.448 | 0.477 |  |  |  |  |
| 32A456         | 8.2                                    | 2.11       | 0.88          | 0.63                            | 0.189 | 0.264 | 0.453 |  |  |  |  |
| 32A457         | 12.2                                   | 3.66       | 1.60          | -0.74                           | 0.055 | 0.770 | 0.825 |  |  |  |  |
| 32A458         | 8.6                                    | 2.64       | 0.87          | 0.33                            | 0.192 | 0.371 | 0.563 |  |  |  |  |
| 32A459         | 10.5                                   | 2.24       | 1.86          | -0.44                           | 0.031 | 0.670 | 0.701 |  |  |  |  |
| 32A460         | 9.5                                    | 2.79       | 1.13          | 0.00                            | 0.129 | 0.500 | 0.629 |  |  |  |  |
| 32A461         | 11.9                                   | 1.88       | 2.97          | -1.27                           | 0.002 | 0.898 | 0.900 |  |  |  |  |
| 32A462         | 8.7                                    | 1.55       | 1.54          | 0.51                            | 0.062 | 0.305 | 0.367 |  |  |  |  |
| 32A463         | 8.0                                    | 2.36       | 0.67          | 0.67                            | 0.251 | 0.251 | 0.502 |  |  |  |  |
| 32A464         | 8.4                                    | 2.79       | 0.74          | 0.40                            | 0.230 | 0.345 | 0.575 |  |  |  |  |

Note: LL and UL are lower limit and upper limit, which are 6.4 mm and 9.5 mm, respectively.

Table B-14. Comparison of depths to backer rod to specified range at Wells, Nevada (Wienrank and Evans, 1995a).

|             | Depth to Top o | Standard                               | Deviations    | Portion Beyond Specified Limits |       |       |          |  |  |  |  |
|-------------|----------------|----------------------------------------|---------------|---------------------------------|-------|-------|----------|--|--|--|--|
| Section No. | Mean           | Std. Dev.                              | LL            | UL                              | Ш     | UL    | Total    |  |  |  |  |
| 323010      |                | No data, existing GPS left undisturbed |               |                                 |       |       |          |  |  |  |  |
| 32A410      | 17.5           | 4.04                                   | 1.18          | 0.39                            | 0.119 | 0.348 | 0.467    |  |  |  |  |
| 32A420      | 17.5           | 1.30                                   | 3.67          | 1.22                            | 0.000 | 0.111 | 0.111    |  |  |  |  |
| 32A430      |                | No                                     | data, unseale | d section                       |       |       |          |  |  |  |  |
| 32A451      | 17.1           | 3.33                                   | 1.33          | 0.57                            | 0.092 | 0.284 | 0.376    |  |  |  |  |
| 32A452      | 18.3           | 2.16                                   | 2.58          | 0.37                            | 0.005 | 0.356 | 0.361    |  |  |  |  |
| 32A453      | 16.8           | 3.76                                   | 1.10          | 0.59                            | 0.136 | 0.278 | 0.414    |  |  |  |  |
| 32A454      |                | No                                     | data, compres | sion seal                       |       |       |          |  |  |  |  |
| 32A455      | 19.5           | 2.79                                   | 2.43          | -0.17                           | 0.008 | 0.568 | 0.576    |  |  |  |  |
| 32A456      | 20.2           | 3.81                                   | 1.95          | -0.29                           | 0.026 | 0.614 | 0.640    |  |  |  |  |
| 32A457      | 20.3           | 2.57                                   | 2.96          | -0.49                           | 0.002 | 0.688 | 0.690    |  |  |  |  |
| 32A458      | 19.7           | 3.02                                   | 2,32          | -0.21                           | 0.010 | 0.583 | 0.593    |  |  |  |  |
| 32A459      | 18.1           | 3.68                                   | 1.47          | 0.26                            | 0.071 | 0.397 | 0.468    |  |  |  |  |
| 32A460      | 16.4           | 4.37                                   | 0.84          | 0.62                            | 0.201 | 0.268 | 0.469    |  |  |  |  |
| 32A461      |                | N <sub>0</sub>                         | data, compres | sion seal                       |       |       | eachight |  |  |  |  |
| 32A462      | 16.4           | 1.83                                   | 1.98          | 1.47                            | 0.024 | 0.071 | 0.095    |  |  |  |  |
| 32A463      | 17.9           | 2.79                                   | 1.87          | 0.40                            | 0.031 | 0.345 | 0.376    |  |  |  |  |
| 32A464      | 19.1           | 1.50                                   | 4.24          | 0.00                            | 0.000 | 0.500 | 0.500    |  |  |  |  |

Note: LL and UL are lower limit and upper limit, which are 12.7 mm and 19.1 mm, respectively.

Table B-15. Summary of sealant shape factors at Wells, Nevada (Wienrank and Evans, 1995a).

|             | Shape Factor | (depth/width) |                     |
|-------------|--------------|---------------|---------------------|
| Section No. | Mean         | Std. Dev.     | Remarks             |
| 323010      |              |               | Undisturbed section |
| 32A410      | 0.571        | 0.461         |                     |
| 32A420      | 0.440        | 0.441         |                     |
| 32A430      |              |               | Unsealed section    |
| 32A451      | 0.938        | 0.658         |                     |
| 32A452      | 0.919        | 0.584         | 等人员的发展。 (1) 第二字基础设计 |
| 32A453      | 0.792        | 0.381         |                     |
| 32A454      |              |               | Compression seal    |
| 32A455      | 0.625        | 0.363         |                     |
| 32A456      | 0.558        | 0.507         |                     |
| 32A457      | 0.792        | 0.464         |                     |
| 32A458      | 1.017        | 0.551         |                     |
| 32A459      | 0.445        | 0.368         |                     |
| 32A460      | 0.688        | 0.414         |                     |
| 32A461      | <del>-</del> |               | Compression seal    |
| 32A462      | 0.625        | 0.212         |                     |
| 32A463      | 0.735        | 0.341         |                     |
| 32A464      | 1.107        | 0.302         |                     |

Table B-16. Average sawing and installation dimensions at Tremonton, Utah (Wienrank and Evans, 1995b).

| Section No. | Joint Width, mm | Joint Depth, mm | Depth to Top of Backer<br>Rod, mm | Depth to Top of<br>Seal, mm |
|-------------|-----------------|-----------------|-----------------------------------|-----------------------------|
| 1 (49C440)  | 10.2            | 30.8            | 15.9                              | <u> </u>                    |
| 2 (49C441)  | 10.3            | 33.2            | 16.7                              | 5.7                         |
| 3 (49C410)  | 10.3            | 36.3            | 15.6                              | 7.3                         |
| 4 (49C430)  | 4.8             | 84.0            |                                   |                             |
| 5 (49C443)  | <u></u> -       |                 |                                   | -                           |
| 6 (49C444)  | 10.3            | 34.1            |                                   |                             |
| 7 (49C445)  | 8.6             | 46.8            |                                   | <u>-</u>                    |
| 8 (49C446)  | 4.8             | 81.3            | 17.9                              | <del>-</del>                |
| 9 (49C447)  | 9.7             | 34.1            | 17.3                              | 7.5                         |
| 10 (49C456) | 4.8             | 33.5            | 16.4                              | -                           |
| 11 (49C457) | <del>-</del>    |                 |                                   |                             |
| 12 (49C458) |                 |                 |                                   |                             |
| 13 (49C448) | 10.0            | 35.3            | 15.9                              | 6.2                         |
| 14 (49C449) | 9.0             | 34.3            |                                   |                             |
| 15 (49C450) | 8.4             | 49.4            |                                   |                             |
| 16 (49C451) | 10.2            | 32.5            | 17.3                              | 7.5                         |
| 17 (49C452) | 10.2            | 34.1            | 17.0                              | 5.7                         |
| 18 (49C431) | 4.9             | 84.8            |                                   |                             |
| 19 (49C453) |                 |                 |                                   |                             |
| 20 (49C454) | 4.8             | 78.1            | 15.7                              |                             |
| 21 (49C455) | 11.3            | 31.4            | 17.6                              | 6.4                         |

Table B-17. Comparison of sawcut widths to specified widths at Tremonton, Utah (Wienrank and Evans, 1995b).

| S N S PARSON S N | Sawcut V | Vidth, mm | Standard Do | eviations for: | Portion | Beyond Specifi | ed Limits |
|------------------|----------|-----------|-------------|----------------|---------|----------------|-----------|
| Section No.      | Mean     | Std. Dev. | LL          | UL             | LL      | UL             | Total     |
| 49C410           | 10.3     | 0.84      | 2.85        | 0.95           | 0.002   | 0.171          | 0.173     |
| 49C430           | 4.8      | 0.00      | Infinity    | Infinity       | 0.000   | 0.000          | 0.000     |
| 49C431           | 4.9      | 0.51      | 6.64        | -0.32          | 0.000   | 0.626          | 0.626     |
| 49C440           | 10.2     | 0.81      | 2.71        | 1.16           | 0.003   | 0.123          | 0.126     |
| 49C441           | 10.3     | 0.84      | 2.85        | 0.95           | 0.002   | 0.171          | 0.173     |
| 49C443           |          |           |             | No data        |         |                |           |
| 49C444           | 10.3     | 0.84      | 2.85        | 0.95           | 0.002   | 0.171          | 0.173     |
| 49C445           | 8.6      | 0.81      | 4,65        | -0.77          | 0.000   | 0.779          | 0.779     |
| 49C446           | 4.8      | 0.00      | Infinity    | Infinity       | 0.000   | 0.000          | 0.000     |
| 49C447           | 9.7      | 0.51      | 3.48        | 2.85           | 0.000   | 0.002          | 0.002     |
| 49C448           | 10.0     | 0.76      | 2.69        | 1.45           | 0.004   | 0.074          | 0.078     |
| 49C449           | 9.0      | 1.07      | 1.04        | 1.93           | 0.149   | 0.027          | 0.176     |
| 49C450           | 8.4      | 0.76      | 4.76        | -0.62          | 0.000   | 0.732          | 0.732     |
| 49C451           | 10.2     | 0.81      | 2.71        | 1.16           | 0.003   | 0.123          | 0.126     |
| 49C452           | 10.2     | 0.81      | 2.71        | 1.16           | 0.003   | 0.123          | 0.126     |
| 49C453           |          |           |             | No data        | i i i   |                |           |
| 49C454           | 4.8      | 0.00      | Infinity    | Infinity       | 0.000   | 0.000          | 0.000     |
| 49C455           | 11.3     | 0.89      | 3.70        | -0.18          | 0.000   | 0.571          | 0.571     |
| 49C456           | 4.8      | 0.00      | Infinity    | Infinity       | 0.000   | 0.000          | 0.000     |
| 49C457           |          |           |             | No data        |         |                |           |
| 49C458           |          |           |             | No data        |         |                |           |

Note: LL and UL are lower limit and upper limit, which are 1.6 mm less than and greater than the specified width, respectively.

Table B-18. Comparison of depths to top of sealant to specified range at Tremonton, Utah (Wienrank and Evans, 1995b).

| • 4 6       | Depth to Top of Seal, mm            |           | Standard De   | Standard Deviations for: |                                        | Portion Beyond Specified Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |  |
|-------------|-------------------------------------|-----------|---------------|--------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--|
| Section No. | Mean                                | Std. Dev. | LL            | UL                       | <u>LL</u>                              | UL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Total  |  |
| 49C410      | 7.3                                 | 1.12      | 0.86          | 2.00                     | 0.195                                  | 0.023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.218  |  |
| 49C430      |                                     |           | No data, unse | ealed section            |                                        | territoria de la versión d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |  |
| 49C431      |                                     |           | No data, unse | ealed section            |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |  |
| 49C440      |                                     |           | Noc           | lata                     |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |  |
| 49C441      | 5.7                                 | 0.81      | -0.77         | 4.65                     | 0.779                                  | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.779  |  |
| 49C443      |                                     |           | Noo           | lata                     |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |  |
| 49C444      |                                     |           | No            | lata                     |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |  |
| 49C445      |                                     | No data   |               |                          |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |  |
| 49C446      | ing manageness, you a make the year | No data   |               |                          |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |  |
| 49C447      | 7.5                                 | 1.07      | 1.04          | 1.93                     | 0.149                                  | 0.027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.176  |  |
| 49C448      | 6.2                                 | 0.89      | -0.18         | 3.70                     | 0.571                                  | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.571  |  |
| 49C449      |                                     |           | No            | data                     | 28 90 90 10 1                          | No at the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ** *** |  |
| 49C450      |                                     |           | No            | data                     | ************************************** |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |  |
| 49C451      | 7.5                                 | 1.07      | 1.04          | 1.93                     | 0.149                                  | 0.027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.176  |  |
| 49C452      | 5.7                                 | 0.81      | -0.77         | 4.65                     | 0.779                                  | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.779  |  |
| 49C453      |                                     |           | No            | data                     |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |  |
| 49C454      |                                     |           | No            | data                     |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |  |
| 49C455      | 6.4                                 | 1.30      | 0.00          | 2.45                     | 0.500                                  | 0.007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.507  |  |
| 49C456      |                                     |           | No            | data                     | teg Nasa II ja                         | The second secon |        |  |
| 49C457      |                                     |           | No            | data                     | 10 (10 m)<br>10 m)                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |  |
| 49C458      |                                     |           | No data, uns  | ealed section            | 4 1 19, 5 2                            | range de la seg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |  |

Table B-19. Comparison of depths to backer rod to specified range at Tremonton, Utah (Wienrank and Evans, 1995b).

|             | Depth to Top of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Backer Rod, mm                                                                                                                                                                                                                   | Standard Deviations for: |              | Portion Beyond Specified Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| Section No. | Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Std. Dev.                                                                                                                                                                                                                        | LL                       | UL           | LL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | UL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Total               |
| 49C410      | 15.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.24                                                                                                                                                                                                                             | 2.28                     | 2.79         | 0,011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.014               |
| 49C430      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                  | No data, unse            | aled section |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| 49C431      | A STATE OF THE STA | erika erika karangan karangan<br>Karangan karangan ka | No data, unse            | aled section |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | gradici de la cigar |
| 49C440      | 15.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.30                                                                                                                                                                                                                             | 2.45                     | 2.45         | 0.007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.014               |
| 49C441      | **16.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.35                                                                                                                                                                                                                             | 2.94                     | 1.77         | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.040               |
| 49C443      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                  | No d                     | ata .        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| 49C444      | and the second second second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                  | No data, comp            | ression seal | The state of the s |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| 49C445      | And the state of t |                                                                                                                                                                                                                                  | No data, comp            | ression seal | en Tean of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| 49C446      | 17.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.07                                                                                                                                                                                                                             | 4.89                     | 1.04         | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.149               |
| 49C447      | 17.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.89                                                                                                                                                                                                                             | 5.11                     | 1.94         | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.026                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.026               |
| 49C448      | 15.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.30                                                                                                                                                                                                                             | 2.45                     | 2.45         | 0.007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.014               |
| 49C449      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                  | No data, comp            | ression seal | See                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| 49C450      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                  | No data, comp            | ression seal |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| 49C451      | 17.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.17                                                                                                                                                                                                                             | 3.93                     | 1.49         | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.068                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.068               |
| 49C452      | 17.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.07                                                                                                                                                                                                                             | 4.00                     | 1.93         | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.027               |
| 49C453      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                  | No d                     | ata          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| 49C454      | 15.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.17                                                                                                                                                                                                                             | 2.57                     | 2.85         | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.005               |
| 49C455      | 17.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.17                                                                                                                                                                                                                             | 4.20                     | 1.22         | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.111               |
| 49C456      | 16.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.30                                                                                                                                                                                                                             | 2.79                     | 2.06         | 0.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.023               |
| 49C457      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                  | No d                     | ata .        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No. 10 Personal Property of the Control of the Cont |                     |
| 49C458      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                  | No data, unse            | aled section |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |

Table B-20. Summary of sealant shape factors at Tremonton, Utah (Wienrank and Evans, 1995b).

|             | Shape Factor (c | depth/width)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |
|-------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Section No. | Mean            | Std. Dev.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Remarks          |
| 49C410      | 0.798           | 0.177                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |
| 49C430      |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Unsealed section |
| 49C431      |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Unsealed section |
| 49C440      |                 | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |
| 49C441      | 1.062           | 0.080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |
| 49C443      |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
| 49C444      |                 | in the second se | Compression seal |
| 49C445      |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Compression seal |
| 49C446      |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
| 49C447      | 1.019           | 0.119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |
| 49C448      | 0.969           | 0.122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |
| 49C449      |                 | 7 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Compression seal |
| 49C450      |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Compression seal |
| 49C451      | 0.976           | 0.205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |
| 49C452      | 1.112           | 0.111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |
| 49C453      |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
| 49C454      |                 | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |
| 49C455      | 1.000           | 0.089                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |
| 49C456      |                 | 17. 17. 17. 17. 17. 17. 17. 17. 17. 17.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |
| 49C457      |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
| 49C458      |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Unsealed section |

Table B-21. Average sawing and installation dimensions at Salt Lake City, Utah (Wienrank and Evans, 1995c).

| Section No. | Joint Width, mm | Joint Depth, mm                                          | Depth to Top of Backer<br>Rod, mm | Depth to Top of<br>Seal, mm              |
|-------------|-----------------|----------------------------------------------------------|-----------------------------------|------------------------------------------|
| 1 (49D430)  |                 |                                                          |                                   |                                          |
| 2 (49D410)  | 9.4             | 43.7                                                     | 14.0                              | 3.5                                      |
| 3 (49D443)  | 9.2             | 40.0                                                     | 13.7                              | 5.9                                      |
| 4 (49D444)  | 7.0             | 52.1                                                     | <del>-</del>                      | 4.8                                      |
| 5 (49D441)  | 9.9             | 34.0                                                     | 15.4                              | 1.2                                      |
| 6 (49D446)  | 4.9             | 53.5                                                     | 17.3                              |                                          |
| 7 (49D440)  | 10.6            | 37.6                                                     | 17.0                              | 3.0                                      |
| 8 (49D445)  | 5.1             | 57.9                                                     |                                   | 4.6                                      |
| 9 (49D461)  | 9.5             | 35.9                                                     | 13.5                              |                                          |
| 10 (49D456) |                 |                                                          |                                   |                                          |
| 11 (49D458) |                 |                                                          |                                   |                                          |
| 12 (49D431) |                 |                                                          |                                   |                                          |
| 13 (49D455) | 10.2            | 32.7                                                     | 18.4                              | 5.1                                      |
| 14 (49D451) | 10.6            | 31.9                                                     | 14.6                              | 6.2                                      |
| 15 (49D449) | 8.0             | 25.6                                                     |                                   |                                          |
| 16 (49D448) | 10.8            | 34.6                                                     | 19.8                              |                                          |
| 17 (49D454) | 5.9             | 43.8                                                     | 19.7                              | 3.8                                      |
| 18 (49D452) | 12.1            | 46.4                                                     | 12.7                              | 2.9                                      |
| 19 (49D450) | 6.2             | 68.1                                                     |                                   |                                          |
| 20 (49D462) | 9.9             | 34.8                                                     | 13.3                              | <del></del>                              |
| 21 (49D459) |                 | r ka in said<br>A in a saga s <del>alah</del> salah sada |                                   | en e |
| 22 (49D460) | 3.8             | 19.1                                                     |                                   |                                          |

Table B-22. Comparison of sawcut widths to specified widths at Salt Lake City, Utah (Wienrank and Evans, 1995c).

|             | Sawcut | Width, mm | Standard De | viations for:    | Portion Beyond Specified Limits |        |       |
|-------------|--------|-----------|-------------|------------------|---------------------------------|--------|-------|
| Section No. | Mean   | Std. Dev. | LL          | UL               | Ш                               | UL     | Total |
| 49D410      | 9.4    | 0.51      | 2.85        | 3.48             | 0.0022                          | 0.0002 | 0.002 |
| 49D430      |        |           | No da       | ata, unsealed so | ection                          |        |       |
| 49D431      |        |           | No da       | ata, unsealed so | ection                          |        |       |
| 49D440      | 10.6   | 0.76      | 3.52        | 0.62             | 0.000                           | 0.268  | 0.268 |
| 49D441      | 9.9    | 1.02      | 1.90        | 1.26             | 0.029                           | 0.104  | 0.133 |
| 49D443      | 9.2    | 0.66      | 1.90        | 2.85             | 0.029                           | 0.002  | 0.031 |
| 49D444      | 7.0    | 0.81      | -1.16       | 5.03             | 0.877                           | 0.000  | 0.877 |
| 49D445      | 5.1    | 0.66      | 0.47        | 4.27             | 0.319                           | 0.000  | 0.319 |
| 49D446      | 4.9    | 0.51      | 6.64        | -0.32            | 0.000                           | 0.626  | 0.626 |
| 49D448      | 10.8   | 0.66      | 4.27        | 0.47             | 0.000                           | 0.319  | 0.319 |
| 49D449      | 8.0    | 0.74      | 0.00        | 4.24             | 0.500                           | 0.000  | 0.500 |
| 49D450      | 6.2    | 0.51      | 2.85        | 3.48             | 0.002                           | 0.000  | 0.002 |
| 49D451      | 10.6   | 0.76      | 3.52        | 0.62             | 0.000                           | 0.268  | 0.268 |
| 49D452ª     | 12.1   | 0.81      | 5.03        | -1.16            | 0.000                           | 0.877  | 0.877 |
| 49D452      | 10.3   | 0.84      | 2.85        | 0.95             | 0.002                           | 0.171  | 0.173 |
| 49D454      | 5.9    | 0.76      | 5.59        | -1.45            | 0.000                           | 0.927  | 0.927 |
| 49D455      | 10.2   | 0.81      | 2.71        | 1.16             | 0.003                           | 0.123  | 0.126 |
| 49D456      |        |           |             | No data          |                                 |        |       |
| 49D458      |        |           | No d        | ata, unsealed s  | ection                          |        |       |
| 49D459      |        |           |             | No data          |                                 |        |       |
| 49D460      | 3.8    | 0.81      | 2.71        | 1.16             | 0.003                           | 0.123  | 0.126 |
| 49D461      | 9.5    | 0.00      | Infinity    | Infinity         | 0.000                           | 0.000  | 0.000 |
| 49D462      | 9.9    | 0.66      | 2.85        | 1.90             | 0.002                           | 0.029  | 0.031 |

Section 49D452 was removed and reinstalled.

Note: LL and UL are lower limit and upper limit, which are 1.6 mm less than and greater than the specified width, respectively.

Table B-23. Comparison of depths to top of sealant to specified range at Salt Lake City, Utah (Wienrank and Evans, 1995c).

|             | Depth to To | op of Seal, mm | Standard Dev     | Standard Deviations for: |                                                                                                               | Portion Beyond Specified Limit |       |  |
|-------------|-------------|----------------|------------------|--------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------|-------|--|
| Section No. | Mean        | Std. Dev.      | LL               | UL                       | LL.                                                                                                           | UL                             | Total |  |
| 49D410      | 3.5         | 1.91           | -1.48            | 3.14                     | 0.9306                                                                                                        | 0.001                          | 0.932 |  |
| 49D430      |             |                | No data, unseal  | ed section               |                                                                                                               |                                |       |  |
| 49D431      |             |                | No data, unseal  | ed section               |                                                                                                               |                                |       |  |
| 49D440      | 3.0         | 2.18           | -1.53            | 2.99                     | 0.937                                                                                                         | 0.001                          | 0.938 |  |
| 49D441      | 1.2         | 2.36           | -2.18            | 3.53                     | 0.985                                                                                                         | 0.000                          | 0.985 |  |
| 49D443      | 5.9         | 1.30           | -0.36            | 2.79                     | 0.641                                                                                                         | 0.003                          | 0.644 |  |
| 49D444      | 4.8         | 1.68           | -0.95            | 2.85                     | 0.829                                                                                                         | 0.002                          | 0.831 |  |
| 49D445      | 4.6         | 1.17           | -1.49            | 4.20                     | 0.932                                                                                                         | 0.000                          | 0.932 |  |
| 49D446      | 0.0         | 2.59           | -2,45            | 3.67                     | 0.993                                                                                                         | 0.000                          | 0.993 |  |
| 49D448      |             |                | No dat           | a                        |                                                                                                               |                                |       |  |
| 49D449      |             |                | No dat           | a                        |                                                                                                               |                                |       |  |
| 49D450      |             |                | No dat           | a                        |                                                                                                               |                                |       |  |
| 49D451      | 6.2         | 0.89           | -0.18            | 3.70                     | 0.571                                                                                                         | 0.000                          | 0.571 |  |
| 49D452*     | 2.9         | 1.02           | -3.48            | 6.64                     | 1.000                                                                                                         | 0.000                          | 1.000 |  |
| 49D452      |             | N              | lo data, removed | and resealed             |                                                                                                               |                                |       |  |
| 49D454      | 3.8         | 2.92           | -0.88            | 1.96                     | 0.811                                                                                                         | 0.025                          | 0.836 |  |
| 49D455      | 5.1         | 1.24           | -1.01            | 3.55                     | 0.844                                                                                                         | 0.000                          | 0.844 |  |
| 49D456      |             |                | No dat           | a                        |                                                                                                               |                                |       |  |
| 49D458      |             |                | No data, unseal  | ed section               | to a market and a special and a second and a |                                |       |  |
| 49D459      |             |                | No dat           | a                        |                                                                                                               |                                |       |  |
| 49D460      |             |                | No data, unseal  | ed section               |                                                                                                               |                                |       |  |
| 49D461      |             |                | No dat           | a                        |                                                                                                               |                                |       |  |
| 49D462      |             |                | No dat           | a /                      |                                                                                                               |                                |       |  |

Section 49D452 was removed and reinstalled.

Table B-24. Comparison of depths to backer rod to specified range at Salt Lake City, Utah (Wienrank and Evans, 1995c).

|             | Depth to Top | of Backer Rod, mm         | Standard Deviations for: |                | Portion Beyond Specified Limits |       |       |  |  |  |  |
|-------------|--------------|---------------------------|--------------------------|----------------|---------------------------------|-------|-------|--|--|--|--|
| Section No. | Mean         | Std. Dev.                 | LL                       | UL             | LL                              | UL    | Total |  |  |  |  |
| 49D410      | 14.0         | 1.24                      | 1.01                     | 4.06           | 0.156                           | 0.000 | 0.156 |  |  |  |  |
| 49D430      |              | No data, unsealed section |                          |                |                                 |       |       |  |  |  |  |
| 49D431      |              | No data, unsealed section |                          |                |                                 |       |       |  |  |  |  |
| 49D440      | 17.0         | 1.30                      | 3.28                     | 1.58           | 0.001                           | 0.057 | 0.058 |  |  |  |  |
| 49D441      | 15.4         | 2.36                      | 1.14                     | 1.54           | 0.127                           | 0.062 | 0.189 |  |  |  |  |
| 49D443      | 13.7         | 1.85                      | 0.51                     | 2.90           | 0.305                           | 0.002 | 0.307 |  |  |  |  |
| 49D444      |              |                           | No data, comp            | ression seal   |                                 |       |       |  |  |  |  |
| 49D445      |              |                           | No data, comp            | ression seal   |                                 |       |       |  |  |  |  |
| 49D446      | 17.3         | 1.91                      | 2.42                     | 0.92           | 0.008                           | 0.179 | 0.187 |  |  |  |  |
| 49D448      | 19.8         | 1.12                      | 6.36                     | -0.71          | 0.000                           | 0.761 | 0.761 |  |  |  |  |
| 49D449      |              |                           | No data, comp            | ression seal   |                                 |       |       |  |  |  |  |
| 49D450      |              |                           | No data, comp            | ression seal   |                                 |       |       |  |  |  |  |
| 49D451      | 14.6         | 1.65                      | 1.16                     | 2.71           | 0.123                           | 0.003 | 0.126 |  |  |  |  |
| 49D452ª     | 12.7         | 1.07                      | 0.00                     | 6.00           | 0.500                           | 0.000 | 0.500 |  |  |  |  |
| 49D452      | 19.7         | 1.70                      | 4.09                     | -0.37          | 0.000                           | 0.644 | 0.644 |  |  |  |  |
| 49D454      | 19.7         | 0.81                      | 8.52                     | -0.77          | 0.000                           | 0.779 | 0.779 |  |  |  |  |
| 49D455      | 18.4         | 1.12                      | 5.15                     | 0.57           | 0.000                           | 0.284 | 0.284 |  |  |  |  |
| 49D456      |              | No dat                    | a, no backer roo         | l used with So | ff-Cut                          |       |       |  |  |  |  |
| 49D458      |              |                           | No data, unse            | aled section   |                                 |       | 11214 |  |  |  |  |
| 49D459      |              | No dat                    | a, no backer roo         | l used with So | off-Cut                         |       |       |  |  |  |  |
| 49D460      |              |                           | No data, unse            | aled section   | -                               |       |       |  |  |  |  |
| 49D461      | 13.5         | 1.73                      | 0.46                     | 3.24           | 0.323                           | 0.001 | 0.324 |  |  |  |  |
| 49D462      | 13.3         | 0.81                      | 0.77                     | 6.97           | 0.221                           | 0.000 | 0.221 |  |  |  |  |

Section 49D452 was removed and reinstalled.

Table B-25. Summary of sealant shape factors at Salt Lake City, Utah (Wienrank and Evans, 1995c).

| [1] 스톡함 - 현실 (1) (1)<br>12 - 이 13 - 14 (1) | Shape Factor                                 | r (depth/width)                        |                                  |
|--------------------------------------------|----------------------------------------------|----------------------------------------|----------------------------------|
| Section No.                                | Mean                                         | Std. Dev.                              | Remarks                          |
| 49D410                                     | 1.013                                        | 0.421                                  |                                  |
| 49D430                                     |                                              |                                        | Unsealed section                 |
| 49D431                                     |                                              |                                        | Unsealed section                 |
| 49D440                                     | 1.329                                        | 0.300                                  |                                  |
| 49D441                                     | 1.462                                        | 0.374                                  |                                  |
| 49D443                                     | 0.853                                        | 0.270                                  |                                  |
| 49D444                                     |                                              |                                        | Compression seal                 |
| 49D445                                     |                                              |                                        | Compression seal                 |
| 49D446                                     | 2.475                                        | 1.752                                  |                                  |
| 49D448                                     | 1.848                                        | 0.197                                  |                                  |
| 49D449                                     |                                              |                                        | Compression seal                 |
| 49D450                                     | es en la |                                        | Compression seal                 |
| 49D451                                     | 0.793                                        | 0.207                                  |                                  |
| 49D452*                                    | 0.821                                        | 0.133                                  | <sup>a</sup> Second installation |
| 49D452                                     |                                              |                                        |                                  |
| 49D454                                     | 2.292                                        | 1.371                                  |                                  |
| 49D455                                     | 1.324                                        | 0.202                                  |                                  |
| 49D456                                     |                                              |                                        |                                  |
| 49D458                                     |                                              |                                        | Unsealed section                 |
| 49D459                                     |                                              |                                        |                                  |
| 49D460                                     |                                              | lag Kuler on <del>The</del> Bij Geroot | Unsealed section                 |
| 49D461                                     |                                              | <u> </u>                               |                                  |
| 49D462                                     |                                              |                                        |                                  |

<sup>\*</sup> Section 49D452 was removed and reinstalled.

Table B-26. Average sawing and installation dimensions at Heber City, Utah (Wienrank and Evans, 1995d).

| Section No. | Joint Width, mm | Joint Depth, mm | Depth to Top of Backer<br>Rod, mm | Depth to Top of<br>Seal, mm |
|-------------|-----------------|-----------------|-----------------------------------|-----------------------------|
| 1 (49E460)  |                 |                 |                                   | <u> </u>                    |
| 2 (49E459)  | 6.4             | 13.8            |                                   | 8.7                         |
| 3 (49E462)  | 9.5             | 33.8            | 17.5                              | 10.8                        |
| 4 (49E449)  | 9.5             | 34.1            | <del>-</del>                      | 8.4                         |
| 5 (49E448)  | 9.5             | 35.9            | 18.4                              | 6.2                         |
| 6 (49E450)  | 8.0             | 40.8            |                                   | 11.4                        |
| 7 (49E454)  | 4.9             | 78.1            | 19.5                              | 9.2                         |
| 8 (49E452)  | 9.5             | 36.0            | 14.3                              | 5.6                         |
| 9 (49E451)  | 11.3            | 34.3            | 17.5                              | 11.1                        |
| 10 (49E455) | 9.7             | 33.7            | 17.8                              | 8.3                         |
| 11 (49E431) |                 |                 |                                   |                             |
| 12 (49E430) |                 |                 |                                   |                             |
| 13 (49E410) | 9.5             | 35.3            | 18.9                              | 10.6                        |
| 14 (49E443) | 9.5             | 34.6            | 18.9                              | 9.2                         |
| 15 (49E441) | 9.5             | 34.9            | 19.1                              | 7.0                         |
| 16 (49E444) | 9.5             | 34.6            |                                   | 6.0                         |
| 17 (49E446) | 4.8             | 73.0            | 14.1                              | 6.2                         |
| 18 (49E440) | 9.5             | 34.6            | 19.5                              | 6.5                         |
| 19 (49E445) | 6.4             | 36.5            |                                   | 8.0                         |
| 20 (49E461) | 9.5             | 34.6            | 18.1                              | 8.8                         |
| 21 (49E456) | 3.2             | 25.7            |                                   | 8.3                         |
| 22 (49E458) |                 |                 |                                   |                             |

Table B-27. Comparison of sawcut widths to specified widths at Heber City, Utah (Wienrank and Evans, 1995d).

|             | Sawcut ' | Width, mm | Standard De | viations for:    | Portion B | Beyond Specifi | ed Limits |
|-------------|----------|-----------|-------------|------------------|-----------|----------------|-----------|
| Section No. | Mean     | Std. Dev. | LL          | UL               | LL        | UL             | Total     |
| 49E410      | 9.5      | 0.00      | Infinity    | Infinity         | 0.000     | 0.000          | 0.000     |
| 49E430      |          |           | No data, ı  | insealed section | a         |                |           |
| 49E431      |          |           | No data, ı  | insealed section | a         |                |           |
| 49E440      | 9.5      | 0.00      | Infinity    | Infinity         | 0.000     | 0.000          | 0.000     |
| 49E441      | 9.5      | 0.00      | Infinity    | Infinity         | 0.000     | 0.000          | 0.000     |
| 49E443      | 9.5      | 0.00      | Infinity    | Infinity         | 0.000     | 0.000          | 0.000     |
| 49E444      | 9.5      | 0.00      | Infinity    | Infinity         | 0.000     | 0.000          | 0.000     |
| 49E445      | 6.4      | 0.00      | Infinity    | Infinity         | 0.000     | 0.000          | 0.000     |
| 49E446      | 4.8      | 0.00      | Infinity    | Infinity         | 0.000     | 0.000          | 0.000     |
| 49E448      | 9.5      | 0.00      | Infinity    | Infinity         | 0.000     | 0.000          | 0.000     |
| 49E449      | 9.5      | 0.00      | Infinity    | Infinity         | 0.000     | 0.000          | 0.000     |
| 49E450      | 8.0      | 0.00      | Infinity    | Infinity         | 0.000     | 0.000          | 0.000     |
| 49E451      | 11.3     | 0.51      | 6.64        | -0.32            | 0.000     | 0.623          | 0.623     |
| 49E452      | 9.5      | 0.00      | Infinity    | Infinity         | 0.000     | 0.000          | 0.000     |
| 49E454      | 4.9      | 0.51      | 6.64        | -0.32            | 0.000     | 0.623          | 0.623     |
| 49E455      | 9.7      | 0.51      | 3.48        | 2.85             | 0.000     | 0.002          | 0.002     |
| 49E456      | 3.2      | 0.00      | Infinity    | Infinity         | 0.000     | 0.000          | 0.000     |
| 49E458      |          |           | No data, 1  | insealed section | n         |                |           |
| 49E459      | 6.4      | 0.00      | Infinity    | Infinity         | 0.000     | 1.000          | 1.000     |
| 49E460      |          |           | No data, u  | insealed section | n         |                |           |
| 49E461      | 9.5      | 0.00      | Infinity    | Infinity         | 0.000     | 0.000          | 0.000     |
| 49E462      | 9.5      | 0.00      | Infinity    | Infinity         | 0,000     | 0.000          | 0.000     |

Note: LL and UL are lower limit and upper limit, which are 1.6 mm less than and greater than the specified width, respectively.

Table B-28. Comparison of depths to top of sealant to specified range at Heber City, Utah (Wienrank and Evans, 1995d).

|             | Depth to T | op of Seal, mm | Standard D | eviations for:  | Portion I | Beyond Speci | fied Limits |
|-------------|------------|----------------|------------|-----------------|-----------|--------------|-------------|
| Section No. | Mean       | Std. Dev.      | IL         | UL              | LL        | UL           | Total       |
| 49E410      | 10.6       | 2.69           | 1.59       | -0.41           | 0.056     | 0.659        | 0.715       |
| 49E430      |            |                | No data, u | nsealed section |           |              |             |
| 49E431      |            |                | No data, u | nsealed section |           |              |             |
| 49E440      | 6.5        | 2.03           | 0.08       | 1.48            | 0.468     | 0.069        | 0.537       |
| 49E441      | 7.0        | 1.52           | 0.41       | 1.66            | 0.341     | 0.049        | 0.390       |
| 49E443      | 9.2        | 1.45           | 1.96       | 0.22            | 0.025     | 0.413        | 0.438       |
| 49E444      | 6.0        | 0.66           | -0.47      | 5.22            | 0.681     | 0.000        | 0.681       |
| 49E445      | 8.0        | 1.07           | 1.50       | 1.50            | 0.067     | 0.067        | 0.134       |
| 49E446      | 6.2        | 1.17           | -0.14      | 2.85            | 0.556     | 0.002        | 0.558       |
| 49E448      | 6.2        | 2.03           | -0.08      | 1.63            | 0.532     | 0.052        | 0.584       |
| 49E449      | 8.4        | 1.50           | 1.37       | 0.74            | 0.085     | 0.230        | 0.315       |
| 49E450      | 11.4       | 1.45           | 3.48       | -1.31           | 0.000     | 0.905        | 0.905       |
| 49E451      | 11,1       | 1.30           | 3.67       | -1.22           | 0.000     | 0.889        | 0.889       |
| 49E452      | 5.6        | 2.51           | -0.32      | 1.58            | 0.626     | 0.057        | 0.683       |
| 49E454      | 9.2        | 1.80           | 1.59       | 0.18            | 0.056     | 0.429        | 0.485       |
| 49E455      | 8.3        | 2.34           | 0.81       | 0.54            | 0.209     | 0.295        | 0.504       |
| 49E456      | 8.3        | 3.71           | 0.52       | 0.33            | 0.302     | 0.371        | 0.673       |
| 49E458      |            |                | No data, u | nsealed section |           |              | 12: 14:     |
| 49E459      | 8.7        | 2.39           | 0.99       | 0.33            | 0.161     | 0.371        | 0.532       |
| 49E460      |            |                | No data, u | nsealed section |           |              |             |
| 49E461      | 8.8        | 2.11           | 1.17       | 0.33            | 0.121     | 0.371        | 0.492       |
| 49E462      | 10.8       | 3.66           | 1.22       | -0.35           | 0.111     | 0.637        | 0.748       |

Table B-29. Comparison of depths to backer rod to specified range at Heber City, Utah (Wienrank and Evans, 1995d).

|             | Depth to Top of | Backer Rod, mm | Standard 1    | Deviations    | Portion Beyond Specified Limits |       |       |
|-------------|-----------------|----------------|---------------|---------------|---------------------------------|-------|-------|
| Section No. | Mean            | Std. Dev.      | LL            | UL            | LL                              | UL    | Total |
| 49E410      | 18.9            | 0.89           | 6.87          | 0.18          | 0.000                           | 0.429 | 0.429 |
| 49E430      |                 |                | No data, unse | aled section  |                                 |       |       |
| 49E431      |                 |                | No data, unse | aled section  |                                 |       |       |
| 49E440      | 19.5            | 1.07           | 6.37          | -0.44         | 0.000                           | 0.670 | 0.670 |
| 49E441      | 19.1            | 1.50           | 4.24          | 0.00          | 0.000                           | 0.500 | 0.500 |
| 49E443      | 18.9            | 0.89           | 6.87          | 0.18          | 0.000                           | 0.429 | 0.429 |
| 49E444      |                 |                | No data, comp | pression seal |                                 |       |       |
| 49E445      |                 |                | No data, comp | oression seal |                                 |       |       |
| 49E446      | 14.1            | 2.03           | 0.70          | 2.41          | 0.242                           | 0.008 | 0.250 |
| 49E448      | 18.4            | 0.81           | 6.97          | 0.77          | 0.000                           | 0.221 | 0.221 |
| 49E449      |                 | 1              | No data, comp | oression seal |                                 |       | - 1   |
| 49E450      |                 |                | No data, comp | oression seal |                                 |       |       |
| 49E451      | 17.5            | 1.30           | 3.67          | 1.22          | 0.000                           | 0.111 | 0.111 |
| 49E452      | 14.3            | 1.50           | 1.06          | 3.18          | 0.145                           | 0.001 | 0.146 |
| 49E454      | 19.5            | 2.13           | 3.21          | -0.22         | 0.001                           | 0.587 | 0.588 |
| 49E455      | 17.8            | 1.32           | 3.82          | 0.96          | 0.000                           | 0.169 | 0.169 |
| 49E456      |                 | No data,       | no backer ro  | d used with S | off-Cut                         |       |       |
| 49E458      |                 |                | No data, unse | aled section  |                                 |       |       |
| 49E459      |                 | No data,       | no backer ro  | d used with S | off-Cut                         |       |       |
| 49E460      |                 |                | No data, unse | aled section  |                                 |       |       |
| 49E461      | 18.1            | 1.35           | 4.03          | 0.71          | 0.000                           | 0.239 | 0.239 |
| 49E462      | 17.5            | 1.83           | 2.60          | 0.87          | 0.005                           | 0.192 | 0.197 |

Table B-30. Summary of sealant shape factors at Heber City, Utah (Wienrank and Evans, 1995d).

|             | Shape Factor | (depth/width) |                  |
|-------------|--------------|---------------|------------------|
| Section No. | Mean         | Std. Dev.     | Remarks          |
| 49E410      | 0.867        | 0.292         |                  |
| 49E430      |              |               | Unsealed section |
| 49E431      |              |               | Unsealed section |
| 49E440      | 1.367        | 0.246         |                  |
| 49E441      | 1.267        | 0.196         |                  |
| 49E443      | 1.017        | 0.214         |                  |
| 49E444      |              |               | Compression seal |
| 49E445      |              |               | Compression seal |
| 49E446      | 1.667        | 0.609         |                  |
| 49E448      | 1.283        | 0.261         |                  |
| 49E449      |              |               | Compression seal |
| 49E450      |              |               | Compression seal |
| 49E451      | 0.563        | 0.172         |                  |
| 49E452      | 0.917        | 0.275         |                  |
| 49E454      | 2.125        | 0.625         |                  |
| 49E455      | 0,600        | 0.634         |                  |
| 49E456      |              |               |                  |
| 49E458      |              |               | Unsealed section |
| 49E459      |              |               |                  |
| 49E460      |              |               | Unsealed section |
| 49E461      | 1.067        | 0.417         |                  |
| 49E462      | 0,700        | 0.436         |                  |

## APPENDIX C. FIELD PERFORMANCE DATA

A large amount of field performance data was collected during the 4 years of SPS-4 supplemental joint seal test site monitoring. The data were stored in spreadsheets and the FHWA LTM database, and summaries of the field performance are contained in the tables in this appendix.

Table C-1. Transverse joint seal performance summary at Mesa, Arizona test site.

| Material      | Cnfg.                                 | Rep.<br>No. | Partial-depth<br>adhesion<br>effectiveness,<br>% edge length | Full-depth<br>adhesion<br>effectiveness,<br>% joint length | Full-depth<br>cohesion<br>effectiveness,<br>% joint length | Partial-depth spall effectiveness, % joint length | Full-depth<br>spall<br>effectiveness,<br>% joint length | Overall effectiveness, % joint length |
|---------------|---------------------------------------|-------------|--------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------|---------------------------------------|
| Crafco RS 221 | С                                     | 1           | 53.8                                                         | 24.9                                                       | 85.0                                                       | 97.7                                              | 99.2                                                    | 9.1                                   |
| Crafco RS 221 | С                                     | 2           | 51.7                                                         | 16.0                                                       | 96.5                                                       | 98.2                                              | 99.7                                                    | 12.2                                  |
|               |                                       | Avg.        | 52.7                                                         | 20.5                                                       | 90.7                                                       | 98.0                                              | 99.5                                                    | 10.7                                  |
| Crafco SS 444 | С                                     | 1           | 100.0                                                        | 99.9                                                       | 2.5                                                        | 97.7                                              | 99.8                                                    | 2.1                                   |
| Crafco SS 444 | С                                     | 2           | 99.7                                                         | 99.7                                                       | 62.3                                                       | 96.9                                              | 99.2                                                    | 61.3                                  |
|               |                                       | Avg.        | 99.8                                                         | 99.8                                                       | 32.4                                                       | 97.3                                              | 99.5                                                    | 31.7                                  |
| Crafco 903-SL | С                                     | 1           | 99.3                                                         | 99.9                                                       | 99.9                                                       | 91.8                                              | 98.4                                                    | 98.3                                  |
| Crafco 903-SL | C                                     | 2           | 97.0                                                         | 99.9                                                       | 99.9                                                       | 90.4                                              | 97.9                                                    | 97.7                                  |
|               | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | Avg.        | 98.1                                                         | 99.9                                                       | 99.9                                                       | 91.1                                              | 98.1                                                    | 98.0                                  |
| Dow 888       | С                                     | 1           | 99.9                                                         | 99.9                                                       | 100.0                                                      | 95.3                                              | 99.0                                                    | 99.0                                  |
| Dow 888       | С                                     | 2           | 100.0                                                        | 100.0                                                      | 100.0                                                      | 92.8                                              | 98.9                                                    | 98.9                                  |
|               |                                       | Avg.        | 99.9                                                         | 100.0                                                      | 100.0                                                      | 94.0                                              | 99.0                                                    | 98.9                                  |
| Dow 888-SL    | С                                     | 1           | 97.7                                                         | 99.4                                                       | 100.0                                                      | 93.8                                              | 98.7                                                    | 98.1                                  |
| Dow 888-SL    | С                                     | 2           | 99.4                                                         | 99.7                                                       | 100.0                                                      | 91.4                                              | 97.7                                                    | 97.3                                  |
|               |                                       | Avg.        | 98.6                                                         | 99.5                                                       | 100.0                                                      | 92.6                                              | 98.2                                                    | 97.7                                  |
| Dow 890-SL    | A                                     | 1           | 96.7                                                         | 99.2                                                       | 100.0                                                      | 95.0                                              | 99.2                                                    | 98.4                                  |
| Dow 890-SL    | Α                                     | 2           | 94.4                                                         | 97.5                                                       | 100.0                                                      | 92.8                                              | 97.4                                                    | 94.8                                  |
|               |                                       | Avg.        | 95.5                                                         | 98.3                                                       | 100.0                                                      | 93.9                                              | 98.3                                                    | 96.6                                  |
| Dow 890-SL    | В                                     | 1           | 98.7                                                         | 99.9                                                       | 100.0                                                      | 94.3                                              | 99.1                                                    | 99.0                                  |
| Dow 890-SL    | В                                     | 2           | 98.5                                                         | 99.5                                                       | 99.9                                                       | 95.3                                              | 98.4                                                    | 97.9                                  |
|               |                                       | Avg.        | 98.6                                                         | 99.7                                                       | 100.0                                                      | 94.8                                              | 98.7                                                    | 98.4                                  |
| Dow 890-SL    | С                                     | 1           | 99.2                                                         | 99.6                                                       | 100.0                                                      | 96.4                                              | 99.7                                                    | 99.2                                  |
| Dow 890-SL    | С                                     | 2           | 99.3                                                         | 99.7                                                       | 100.0                                                      | 96.5                                              | 98.6                                                    | 98.3                                  |
|               |                                       | Avg.        | 99.2                                                         | 99.7                                                       | 100.0                                                      | 96.4                                              | 99.1                                                    | 98.8                                  |
| Mobay 960-SL  | С                                     | 1           | 99.7                                                         | 99.4                                                       | 99.2                                                       | 92.8                                              | 96.2                                                    | 94.8                                  |
| Mobay 960-SL  | С                                     | 2           | 99.9                                                         | 99.9                                                       | 99.9                                                       | 95.9                                              | 98.0                                                    | 97.9                                  |
|               |                                       | Avg.        | 99.8                                                         | 99.7                                                       | 99.6                                                       | 94.4                                              | 97.1                                                    | 96.4                                  |
| No Seal       | A                                     | 1           | 100.0                                                        | 100.0                                                      | 100.0                                                      | 96.8                                              | 99.2                                                    | 99.2                                  |
| No Seal       | A                                     | 2           | 100.0                                                        | 100.0                                                      | 100.0                                                      | 91.3                                              | 99.0                                                    | 99.0                                  |
|               |                                       | Avg.        | 100.0                                                        | 100.0                                                      | 100.0                                                      | 94.0                                              | 99.1                                                    | 99.1                                  |

Table C-2. Overall transverse joint seal effectiveness at Mesa, Arizona test site.

|                         |                        |          | Overall effectiveness over time, percent joint length |           |           |           |           |  |  |
|-------------------------|------------------------|----------|-------------------------------------------------------|-----------|-----------|-----------|-----------|--|--|
| Material                | Config.                | Rep. No. | 0 months                                              | 45 months | 60 months | 72 months | 83 months |  |  |
|                         |                        | 1        | 100.0                                                 | 67.9      | 50.7      | 18.1      | 9.1       |  |  |
| Crafco<br>RS 221        | С                      | 2        | 100.0                                                 | 28.1      | 22.1      | 18.1      | 12.2      |  |  |
| INO DEI                 |                        | Avg.     | 100.0                                                 | 48.0      | 36.4      | 18.1      | 10.7      |  |  |
|                         | The second of the Same | 1        | 100.0                                                 | 83.6      | 30.6      | 10.8      | 2.3       |  |  |
| Crafco<br>SS 444        | C                      | 2        | 100.0                                                 | 99.6      | 94.7      | 81.3      | 61.3      |  |  |
| 55 777                  |                        | Avg.     | 100.0                                                 | 91.6      | 62.7      | 46.0      | 31.8      |  |  |
| <b>~</b> ^              | New Maria              | 1        | 100.0                                                 | 99.4      | 98.8      | 98.4      | 98.3      |  |  |
| Crafco<br>903-SL        | C                      | 2        | 100.0                                                 | 99.1      | 98.3      | 97.8      | 97.7      |  |  |
| J0J-0L                  |                        | Avg.     | 100.0                                                 | 99.3      | 98.6      | 98.1      | 98.0      |  |  |
|                         | in the record          | 1        | 100.0                                                 | 99.5      | 99.3      | 99.1      | 99.0      |  |  |
| Dow 888                 | ow 888 C               | 2        | 100.0                                                 | 99.5      | 99.1      | 99.0      | 98.9      |  |  |
|                         |                        | Avg.     | 100.0                                                 | 99.5      | 99.2      | 99.1      | 98.9      |  |  |
|                         |                        | 1        | 100.0                                                 | 99.3      | 98.8      | 98.4      | 98.1      |  |  |
| Dow<br>888-SL           | С                      | 2        | 100.0                                                 | 98.9      | 97.8      | 97.6      | 97.3      |  |  |
| 666-5E                  |                        | Avg.     | 100.0                                                 | 99.1      | 98.3      | 98.0      | 97.7      |  |  |
|                         |                        | 1        | 100.0                                                 | 99.6      | 99.2      | 98.8      | 98.4      |  |  |
| Dow<br>890-SL           | À                      | 2        | 100.0                                                 | 97.6      | 95.9      | 95.2      | 94.8      |  |  |
| 090-3L                  |                        | Avg.     | 100.0                                                 | 98.6      | 97.5      | 97.0      | 96.6      |  |  |
|                         |                        | 1        | 100.0                                                 | 99.7      | 99.4      | 99.1      | 99.0      |  |  |
| Dow<br>890-SL           | В                      | 2        | 100.0                                                 | 99.5      | 98.3      | 98.0      | 97.9      |  |  |
| 890-SL                  |                        | Avg.     | 100.0                                                 | 99.6      | 98.8      | 98.6      | 98.4      |  |  |
|                         |                        | 1        | 100.0                                                 | 99.7      | 99.6      | 99.4      | 99.2      |  |  |
| Dow<br>890-SL           | C                      | 2        | 100.0                                                 | 99.5      | 98.6      | 98.4      | 98.3      |  |  |
| 690-3L                  |                        | Avg.     | 100.0                                                 | 99.6      | 99.1      | 98.9      | 98.8      |  |  |
|                         |                        | 1        | 100.0                                                 | 61.8      | 41.3      | 28.8      | 26.6      |  |  |
| D.S. Brown<br>V-687     | С                      | 2        | 100.0                                                 | 64.0      | 41.1      | 35.9      | 32.8      |  |  |
| V-06/                   |                        | Avg.     | 100.0                                                 | 62.9      | 41.2      | 32.3      | 29.7      |  |  |
|                         |                        | 1.       | 100.0                                                 | 97.6      | 96.8      | 95.8      | 94.8      |  |  |
| Mobay<br>960-SL         | С                      | 2        | 100.0                                                 | 98.9      | 98.2      | 98.1      | 97.9      |  |  |
| 900-SL                  |                        | Avg.     | 100.0                                                 | 98.2      | 97.5      | 97.0      | 96.4      |  |  |
| Watson<br>Bowman<br>687 | C                      |          | 100.0                                                 | 97.7      | 95.5      | 91.1      | 87.2      |  |  |
| Watson<br>Bowman<br>812 | С                      | 1        | 100.0                                                 | 99.9      | 96.9      | 93.5      | 90.3      |  |  |
|                         |                        | 1        | 100.0                                                 | 99.8      | 99.5      | 99.4      | 99.2      |  |  |
| No Seal                 | A                      | 2        | 100.0                                                 | 99.5      | 99.1      | 99.0      | 99.0      |  |  |
|                         |                        | Avg.     | 100.0                                                 | 99.7      | 99.3      | 99.2      | 99.1      |  |  |

Table C-3. Adhesion effectiveness at Mesa, Arizona test site.

|                         |          |          | Adhesion effectiveness over time, percent joint length |           |           |           |           |  |
|-------------------------|----------|----------|--------------------------------------------------------|-----------|-----------|-----------|-----------|--|
| Material                | Config.  | Rep. No. | 0 months                                               | 45 months | 60 months | 72 months | 83 months |  |
| Crafco                  |          | 1        | 100.0                                                  | 71.1      | 55.6      | 24.2      | 24.9      |  |
| RS 221                  | С        | 2        | 100.0                                                  | 29.6      | 24.0      | 21.5      | 16.0      |  |
|                         |          | Avg.     | 100.0                                                  | 50.3      | 39.8      | 22.9      | 20.5      |  |
| Crafco                  |          | 1        | 100.0                                                  | 99.1      | 98.8      | 99.5      | 99.9      |  |
| SS 444                  | С        | 2        | 100.0                                                  | 100.0     | 99.9      | 100.0     | 99.7      |  |
|                         |          | Avg.     | 100.0                                                  | 99.5      | 99.4      | 99.7      | 99.8      |  |
| Crafco                  |          | 1        | 100.0                                                  | 99.9      | 99.9      | 99.9      | 99.9      |  |
| 903-SL                  | С        | 2        | 100.0                                                  | 99.9      | 99.9      | 99.9      | 99.9      |  |
|                         |          | Avg.     | 100.0                                                  | 99.9      | 99.9      | 99.9      | 99.9      |  |
| D 000                   | С        | 1        | 100.0                                                  | 100.0     | 100.0     | 100.0     | 99.9      |  |
| Dow 888                 |          | 2        | 100.0                                                  | 100.0     | 100.0     | 100.0     | 100.0     |  |
|                         |          | Avg.     | 100.0                                                  | 100.0     | 100.0     | 100.0     | 100.0     |  |
| Dow                     | in Maria | 1        | 100.0                                                  | 99.8      | 99.8      | 99.5      | 99.4      |  |
| 888-SL                  | С        | 2        | 100.0                                                  | 99.8      | 99.8      | 99.8      | 99.7      |  |
|                         |          | Avg.     | 100.0                                                  | 99.8      | 99.8      | 99.7      | 99.5      |  |
| Dow                     |          | 1        | 100.0                                                  | 99.9      | 99.8      | 99.5      | 99.2      |  |
| 890-SL                  | A        | 2        | 100.0                                                  | 98.8      | 98.3      | 97.7      | 97.5      |  |
|                         |          | Avg.     | 100.0                                                  | 99.4      | 99.0      | 98.6      | 98.3      |  |
| Dow                     |          | 1        | 100.0                                                  | 99.9      | 99.9      | 99.9      | 99.9      |  |
| 890-SL                  | В        | 2        | 100.0                                                  | 99.9      | 99.8      | 99.6      | 99.5      |  |
|                         |          | Avg.     | 100.0                                                  | 99.9      | 99.9      | 99.8      | 99.7      |  |
| Dow                     |          | 1        | 100.0                                                  | 99.9      | 99.8      | 99.7      | 99.6      |  |
| 890-SL                  | <b>C</b> | 2        | 100.0                                                  | 99.9      | 99.8      | 99.7      | 99.7      |  |
|                         |          | Avg.     | 100.0                                                  | 99.9      | 99.8      | 99.7      | 99.7      |  |
| D.S. Brown              |          | 1        | 100.0                                                  | 100.0     | 100.0     | 100.0     | 100.0     |  |
| V-687                   | C        | 2        | 100.0                                                  | 100.0     | 100.0     | 100.0     | 100.0     |  |
|                         |          | Avg.     | 100.0                                                  | 100.0     | 100.0     | 100.0     | 100.0     |  |
| Mobay                   |          | 1        | 100.0                                                  | 99.9      | 99.7      | 99.3      | 99.4      |  |
| 960-SL                  | C        | 2        | 100.0                                                  | 100.0     | 100.0     | 100.0     | 99.9      |  |
|                         |          | Avg.     | 100.0                                                  | 99.9      | 99.9      | 99.7      | 99.7      |  |
| Watson<br>Bowman<br>687 | C        | 1        | 100.0                                                  | 100.0     | 100.0     | 100.0     | 100.0     |  |
| Watson<br>Bowman<br>812 | С        | 1        | 100.0                                                  | 100.0     | 100.0     | 100.0     | 100.0     |  |
|                         |          | 1        | 100.0                                                  | 100.0     | 100.0     | 100.0     | 100.0     |  |
| No Seal                 | A        | 2        | 100.0                                                  | 100.0     | 100.0     | 100.0     | 100.0     |  |
|                         |          | Avg.     | 100.0                                                  | 100.0     | 100.0     | 100.0     | 100.0     |  |

Table C-4. Cohesion effectiveness at Mesa, Arizona test site.

|                  |         |          | Col      | nesion effective | ness over time, | percent joint le | ngth      |
|------------------|---------|----------|----------|------------------|-----------------|------------------|-----------|
| Material         | Config. | Rep. No. | 0 months | 45 months        | 60 months       | 72 months        | 83 months |
| Crafco           | c       | 1        | 100.0    | 97.3             | 95.8            | 94.7             | 85.0      |
| RS 221           |         | 2        | 100.0    | 98.7             | 98.4            | 96.8             | 96.5      |
|                  |         | Avg.     | 100.0    | 98.0             | 97.1            | 95.7             | 90.7      |
| Crafco           | С       | 1        | 100.0    | 84.7             | 32.0            | 11.5             | 2.5       |
| SS 444           |         | 2        | 100.0    | 99.9             | 95.4            | 81.9             | 62.3      |
|                  |         | Avg.     | 100.0    | 92.3             | 63.7            | 46.7             | 32.4      |
| Crafco           | С       | 1        | 100.0    | 100.0            | 100.0           | 100.0            | 99.9      |
| 903-SL           |         | 2        | 100.0    | 100.0            | 100.0           | 99.8             | 99.9      |
|                  |         | Avg.     | 100.0    | 100.0            | 100.0           | 99.9             | 99.9      |
| Dow 888          | С       | 1        | 100.0    | 100.0            | 100.0           | 100.0            | 100.0     |
|                  |         | 2        | 100.0    | 100.0            | 100.0           | 100.0            | 100.0     |
|                  |         | Avg.     | 100.0    | 100.0            | 100.0           | 100.0            | 100.0     |
| Dow              | С       | 1        | 100.0    | 100.0            | 100.0           | 100.0            | 100.0     |
| 888-SL           |         | 2        | 100.0    | 100.0            | 100.0           | 100.0            | 100.0     |
|                  |         | Avg.     | 100.0    | 100.0            | 100.0           | 100.0            | 100.0     |
| Dow              | Α       | 1        | 100.0    | 100.0            | 100.0           | 100.0            | 100.0     |
| 890-SL           |         | 2        | 100.0    | 100.0            | 100.0           | 100.0            | 100.0     |
|                  |         | Avg.     | 100.0    | 100.0            | 100.0           | 100.0            | 100.0     |
| Dow              | В       | 1        | 100.0    | 100.0            | 100.0           | 100.0            | 100.0     |
| 890-SL           |         | 2        | 100.0    | 100.0            | 100.0           | 99.9             | 99.9      |
|                  |         | Avg.     | 100.0    | 100.0            | 100.0           | 100.0            | 100.0     |
| Dow              | С       | 1        | 100.0    | 100.0            | 100.0           | 100.0            | 100.0     |
| 890-SL           |         | 2        | 100.0    | 100.0            | 100.0           | 100.0            | 100.0     |
|                  |         | Avg.     | 100.0    | 100.0            | 100.0           | 100.0            | 100.0     |
| D.S. Brown       | c       | 1        | 100.0    | 100.0            | 100.0           | 100.0            | 100.0     |
| V-687            |         | 2        | 100.0    | 100.0            | 100.0           | 100.0            | 100.0     |
|                  |         | Avg.     | 100.0    | 100.0            | 100.0           | 100.0            | 100.0     |
| Mobay            | С       | 1        | 100.0    | 99.9             | 100.0           | 99.9             | 99.2      |
| 960- <b>S</b> L  |         | 2        | 100.0    | 99.9             | 99.9            | 99.9             | 99.9      |
|                  |         | Avg.     | 100.0    | 99.9             | 100.0           | 99.9             | 99.6      |
| Watson           | С       | 1        | 100.0    | 100.0            | 100.0           | 100.0            | 100.0     |
| Bowman<br>687    |         |          |          |                  |                 |                  |           |
| Watson<br>Bowman | C       | <b>2</b> | 100.0    | 100.0            | 100.0           | 100.0            | 100.0     |
| 812<br>No Seal   | Α       | 1        | 100.0    | 100.0            | 100.0           | 100.0            | 100.0     |
|                  |         | 2        | 100.0    | 100.0            | 100.0           | 100.0            | 100.0     |
|                  |         | Avg.     | 100.0    | 100.0            | 100.0           | 100.0            | 100.0     |

Table C-5. Spall effectiveness at Mesa, Arizona test site.

|                         |         |          | S        | pall effectivene | ss over time, pe | rcent joint leng | th        |
|-------------------------|---------|----------|----------|------------------|------------------|------------------|-----------|
| Material                | Config. | Rep. No. | 0 months | 45 months        | 60 months        | 72 months        | 83 months |
| Crafco                  | C       | 1        | 100.0    | 99.5             | 99.3             | 99.2             | 99.2      |
| RS 221                  |         | 2        | 100.0    | 99.8             | 99.7             | 99.7             | 99.7      |
|                         |         | Avg.     | 100.0    | 99.7             | 99.5             | 99.5             | 99.5      |
| Crafco                  | С       | 1        | 100.0    | 99.8             | 99.8             | 99.8             | 99.8      |
| SS 444                  |         | 2        | 100.0    | 99.7             | 99.4             | 99.3             | 99.2      |
|                         |         | Avg.     | 100.0    | 99.7             | 99.6             | 99.5             | 99.5      |
| Crafco                  | C       | 1        | 100.0    | 99.5             | 98.9             | 98.4             | 98.4      |
| 903-SL                  |         | 2        | 100.0    | 99.2             | 98.4             | 98.0             | 97.9      |
|                         |         | Avg.     | 100.0    | 99.4             | 98.7             | 98.2             | 98.1      |
| Dow 888                 | C       | 1        | 100.0    | 99.5             | 99.3             | 99.1             | 99.0      |
|                         |         | 2        | 100.0    | 99.5             | 99.1             | 99.0             | 98.9      |
|                         |         | Avg.     | 100.0    | 99.5             | 99.2             | 99.1             | 99.0      |
| Dow                     | С       | 1        | 100.0    | 99.5             | 99.0             | 98.8             | 98.7      |
| 888-SL                  |         | 2        | 100.0    | 99.1             | 98.0             | 97.8             | 97.7      |
|                         |         | Avg.     | 100.0    | 99.3             | 98.5             | 98.3             | 98.2      |
| Dow                     | Α       | 1        | 100.0    | 99.7             | 99.4             | 99.3             | 99.2      |
| 890-SL                  |         | 2        | 100.0    | 98.8             | 97.6             | 97.5             | 97.4      |
|                         |         | Avg.     | 100.0    | 99.2             | 98.5             | 98.4             | 98.3      |
| Dow                     | В       | 1        | 100.0    | 99.8             | 99.4             | 99.2             | 99.1      |
| 890-SL                  |         | 2        | 100.0    | 99.5             | 98.5             | 98.5             | 98.4      |
|                         |         | Avg.     | 100.0    | 99.7             | 99.0             | 98.8             | 98.7      |
| Dow                     | С       | 1        | 100.0    | 99.8             | 99.8             | 99.7             | 99.7      |
| 890-SL                  |         | 2        | 100.0    | 99.6             | 98.8             | 98.7             | 98.6      |
|                         |         | Avg.     | 100.0    | 99.7             | 99.3             | 99.2             | 99.1      |
| D.S. Brown              | С       | 1        | 100.0    | 99.8             | 99.7             | 99.5             | 99.5      |
| V-687                   |         | 2        | 100.0    | 99.7             | 99.6             | 99.6             | 99.4      |
|                         |         | Avg.     | 100.0    | 99.7             | 99.6             | 99.6             | 99.5      |
| Mobay                   | C ,     | 1        | 100.0    | 97.7             | 97.1             | 96.6             | 96.2      |
| 960-SL                  |         | 2        | 100.0    | 99.0             | 98.3             | 98.2             | 98.0      |
|                         |         | Avg.     | 100.0    | 98.4             | 97.7             | 97.4             | 97.1      |
| Watson<br>Bowman<br>687 | С       | 1 1      | 100.0    | 99.9             | 99.9             | 99.9             | 99.8      |
| Watson<br>Bowman<br>812 | С       | 2        | 100.0    | 100.0            | 100.0            | 99.9             | 99.9      |
| No Seal                 | A       | 1        | 100.0    | 99.8             | 99.5             | 99.4             | 99.2      |
|                         |         | 2        | 100.0    | 99.5             | 99.1             | 99.0             | 99.0      |
|                         |         | Avg.     | 100.0    | 99.7             | 99.3             | 99.2             | 99.1      |

Table C-6. Twist effectiveness at Mesa, Arizona test site.

|                         |         | A CAR STATE | Twist effectiveness over time, percent joint length |           |           |           |           |  |
|-------------------------|---------|-------------|-----------------------------------------------------|-----------|-----------|-----------|-----------|--|
| Material                | Config. | Rep. No.    | 0 months                                            | 45 months | 60 months | 72 months | 83 months |  |
| D.S. Brown              | С       | 1           | 100                                                 | 100       | 100       | 100       | 100       |  |
| V-687                   |         | 2           | 100                                                 | 100       | 100       | 100       | 100       |  |
|                         |         | Avg.        | 100                                                 | 100       | 100       | 100       | 100       |  |
| Watson<br>Bowman<br>687 | C       | 1           | 100                                                 | 100       | 100       | 100       | 100       |  |
| Watson<br>Bowman<br>812 | C       | 2           | 100                                                 | 100       | 100       | 100       | 100       |  |

Table C-7. Compression set effectiveness at Mesa, Arizona test site.

|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | Compression set effectiveness over time, percent joint length |           |           |           |           |  |  |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------------------------------------------------|-----------|-----------|-----------|-----------|--|--|
| Material Conf        | Config.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Rep. No. | 0 months                                                      | 45 months | 60 months | 72 months | 83 months |  |  |
| D.S. Brown           | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1        | 100.0                                                         | 92.9      | 87.0      | 80.8      | 78.8      |  |  |
| V-687                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | 100.0                                                         | 98.3      | 93.8      | 93.2      | 91.6      |  |  |
|                      | and the second of the second o | Avg.     | 100.0                                                         | 95.6      | 90.4      | 87.0      | 85.2      |  |  |
| Watson<br>Bowman 687 | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1        | 100.0                                                         | 99.5      | 98.8      | 96.6      | 94.7      |  |  |
| Watson<br>Bowman 812 | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2        | 100.0                                                         | 100.0     | 98.1      | 95.4      | 95.0      |  |  |

Table C-8. Gap effectiveness at Mesa, Arizona test site.

|                      |         |          | Gap effectiveness over time, percent joint length |           |           |           |           |  |
|----------------------|---------|----------|---------------------------------------------------|-----------|-----------|-----------|-----------|--|
| Material             | Config. | Rep. No. | 0 months                                          | 45 months | 60 months | 72 months | 83 months |  |
| D.S. Brown           | С       | 1        | 100.0                                             | 100.0     | 54.6      | 48.5      | 48.2      |  |
| V-687                |         | 2        | 100.0                                             | 100.0     | 47.7      | 43.1      | 41.8      |  |
|                      |         | Avg.     | 100.0                                             | 100.0     | 51.1      | 45.8      | 45.0      |  |
| Watson<br>Bowman 687 | С       | 1        | 100.0                                             | 100.0     | 96.8      | 94.6      | 92.7      |  |
| Watson<br>Bowman 812 | С       | 2        | 100.0                                             | 100.0     | 98.8      | 98.1      | 95.3      |  |

Table C-9. Transverse joint seal performance at Campo, Colorado test site.

| Material      | Cnfg. | Rep.<br>No. | Partial-depth<br>adhesion<br>effectiveness,<br>% edge length | Full-depth<br>adhesion<br>effectiveness,<br>% joint length | Full-depth<br>cohesion<br>effectiveness,<br>% joint length | Partial-depth spall effectiveness, % joint length | Full-depth spall effectiveness, % joint length | Overall effectiveness, % joint length |
|---------------|-------|-------------|--------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------|------------------------------------------------|---------------------------------------|
| Crafco 902    | Α     | 1           | 99.9                                                         | 99.7                                                       | 99.3                                                       | 97.2                                              | 98.9                                           | 94.9                                  |
| Crafco 902    | Α     | 2           | 98.5                                                         | 99.7                                                       | 98.3                                                       | 97.6                                              | 99.1                                           | 96.2                                  |
|               |       | Avg.        | 99.2                                                         | 99.7                                                       | 98.8                                                       | 97.4                                              | 99.0                                           | 95.6                                  |
| Crafco 902    | В     | 1           | 97.1                                                         | 99.9                                                       | 99.3                                                       | 96.1                                              | 98.7                                           | 97.8                                  |
| Crafco 902    | В     | 2           | 98.5                                                         | 99.8                                                       | 97.5                                                       | 96.8                                              | 99.0                                           | 95.3                                  |
| gi.           |       | Avg.        | 97.8                                                         | 99.9                                                       | 98.4                                                       | 96.4                                              | 98.8                                           | 96.5                                  |
| Crafco 902    | C     | 1           | 93.3                                                         | 100.0                                                      | 99.7                                                       | 97.3                                              | 99.1                                           | 98.8                                  |
| Crafco 902    | С     | 2           | 98.0                                                         | 99.9                                                       | 99.8                                                       | 96.5                                              | 99.1                                           | 98.9                                  |
|               |       | Avg.        | 95.7                                                         | 100.0                                                      | 99.8                                                       | 96.9                                              | 99.1                                           | 98.8                                  |
| Crafco 902    | G     | 1           | 98.1                                                         | 100.0                                                      | 97.9                                                       | 98.8                                              | 99.2                                           | 97.1                                  |
| Crafco 902    | G     | 2           | 96.4                                                         | 99.9                                                       | 96.0                                                       | 99.6                                              | 99.6                                           | 95.0                                  |
|               |       | Avg.        | 97.2                                                         | 99.9                                                       | 96.9                                                       | 99.2                                              | 99.4                                           | 96.0                                  |
| Crafco 903-SL | Α     | 1           | 44.0                                                         | 74.0                                                       | 100.0                                                      | 97.7                                              | 98.9                                           | 72.9                                  |
| Crafco 903-SL | Α     | 2           | 91.4                                                         | 99.5                                                       | 99.9                                                       | 95.3                                              | 98.4                                           | 97.6                                  |
|               |       | Avg.        | 67.7                                                         | 86.8                                                       | 99.9                                                       | 96.5                                              | 98.6                                           | 85.3                                  |
| Crafco 903-SL | В     | 1           | 78.9                                                         | 98.8                                                       | 100.0                                                      | 98.4                                              | 98.6                                           | 97.5                                  |
| Crafco 903-SL | В     | 2           | 94.0                                                         | 99.4                                                       | 99.9                                                       | 96.3                                              | 98.6                                           | 97.9                                  |
|               |       | Avg.        | 86.5                                                         | 99.1                                                       | 100.0                                                      | 97.3                                              | 98.6                                           | 97.7                                  |
| Crafco 903-SL | С     | 1           | 74.2                                                         | 99.8                                                       | 100.0                                                      | 98.2                                              | 99.4                                           | 99.2                                  |
| Crafco 903-SL | С     | 2           | 95.8                                                         | 99.9                                                       | 100.0                                                      | 96.2                                              | 98.8                                           | 98.7                                  |
|               |       | Avg.        | 85.0                                                         | 99.9                                                       | 100.0                                                      | 97.2                                              | 99.1                                           | 99.0                                  |
| No Seal       | Α     | 1           | 100.0                                                        | 100.0                                                      | 100.0                                                      | 92.8                                              | 97.2                                           | 97.2                                  |
| No Seal       | Α     | 2           | 100.0                                                        | 100.0                                                      | 100.0                                                      | 92.4                                              | 99.0                                           | 99.0                                  |
|               |       | Avg.        | 100.0                                                        | 100.0                                                      | 100.0                                                      | 92.6                                              | 98.1                                           | 98.1                                  |

Table C-10. Overall transverse joint seal effectiveness at Campo, Colorado test site.

|                      |              |          | Overall e | ffectiveness ov | er time, percent | joint length |
|----------------------|--------------|----------|-----------|-----------------|------------------|--------------|
| Material             | Config.      | Rep. No. | 0 months  | 6 months        | 13 months        | 25 months    |
| Crafco 902           | A            | 1        | 100.0     | 99.8            | 98.7             | 97.9         |
|                      |              | 2        | 100.0     | 99.8            | 98.1             | 97.1         |
|                      |              | Avg.     | 100.0     | 99.8            | 98.4             | 97.5         |
| Crafco 902           | В            | 1        | 100.0     | 99.2            | 98.3             | 97.9         |
|                      |              | 2        | 100.0     | 98.9            | 96.5             | 96.2         |
|                      |              | Avg.     | 100.0     | 99.1            | 97.4             | 97.1         |
| Crafco 902           | С            | 1        | 100.0     | 99.7            | 99.2             | 98.8         |
|                      |              | 2        | 100.0     | 99.8            | 99.3             | 98.9         |
|                      |              | Avg.     | 100.0     | 99.7            | 99.2             | 98.8         |
| Crafco 902           | G            | 1        | 100.0     | 99.0            | 97.4             | 97.1         |
|                      |              | 2        | 100.0     | 99.9            | 96.4             | 95.4         |
|                      |              | Avg.     | 100.0     | 99.4            | 96.9             | 96.3         |
| Crafco               | Α            | 1        | 100.0     | 99.8            | 99.0             | 72.9         |
| 903-SL               |              | 2        | 100.0     | 99.8            | 98.7             | 97.8         |
|                      |              | Avg.     | 100.0     | 99.8            | 98.8             | 85.4         |
| Crafco               | \ <b>B</b> , | 1.,      | 100.0     | 99.2            | 98.3             | 97.5         |
| 903-SL               |              | 2        | 100.0     | 99.5            | 99.0             | 97.9         |
|                      |              | Avg.     | 100.0     | 99.4            | 98.6             | 97.7         |
| Crafco               | С            | 1        | 100.0     | 99.8            | 99.6             | 99.2         |
| 903-SL               |              | 2        | 100.0     | 99.7            | 99.1             | 98.7         |
|                      |              | Avg.     | 100.0     | 99.7            | 99.3             | 99.0         |
| D.S. Brown<br>E-437H | В            | 1        | 100.0     | 81.7            | 66.6             | 63.2         |
| No Seal              | A            | 1        | 100.0     | 98.5            | 98.1             | 97.2         |
|                      |              | 2        | 100.0     | 99.3            | 99.1             | 99.0         |
|                      |              | Avg.     | 100.0     | 98.9            | 98.6             | 98.1         |
| D.S. Brown<br>V-687  | C            | 1        | 100.0     | 85.2            | 82.8             | 82.7         |
| Crafco 902           | С            | 1 1      | 100.0     | 99.8            | 99.2             | 98.5         |

Table C-11. Adhesion effectiveness at Campo, Colorado test site.

|                      |          |          | Adhesion e | ffectiveness ove | er time, percent | joint length |
|----------------------|----------|----------|------------|------------------|------------------|--------------|
| Material             | Config.  | Rep. No. | 0 months   | 6 months         | 13 months        | 25 months    |
| Crafco 902           | A        | 1        | 100.0      | 99.9             | 99.9             | 99.7         |
|                      |          | 2        | 100.0      | 100.0            | 100.0            | 99.7         |
|                      |          | Avg.     | 100.0      | 99.9             | 100.0            | 99.7         |
| Crafco 902           | В        | 1        | 100.0      | 99.9             | 99.9             | 99.9         |
|                      |          | 2        | 100.0      | 100.0            | 99.9             | 99.8         |
|                      |          | Avg.     | 100.0      | 99.9             | 99.9             | 99.9         |
| Crafco 902           | С        | 1        | 100.0      | 100.0            | 100.0            | 100.0        |
|                      |          | 2        | 100.0      | 100.0            | 100.0            | 99.9         |
|                      |          | Avg.     | 100.0      | 100.0            | 100.0            | 100.0        |
| Crafco 902           | G        | 1        | 100.0      | 100.0            | 100.0            | 100.0        |
|                      |          | 2        | 100.0      | 100.0            | 100.0            | 99.9         |
|                      |          | Avg.     | 100.0      | 100.0            | 100.0            | 99.9         |
| Crafco               | A        | 1        | 100.0      | 99.9             | 99.5             | 74.0         |
| 903-SL               |          | 2        | 100.0      | 99.9             | 99.9             | 99.5         |
|                      |          | Avg.     | 100.0      | 99.9             | 99.7             | 86.8         |
| Crafco               | В        | 1        | 100.0      | 99.9             | 99.7             | 98.8         |
| 903-SL               |          | 2        | 100.0      | 100.0            | 99.9             | 99.4         |
|                      |          | Avg.     | 100.0      | 100.0            | 99.8             | 99.1         |
| Crafco               | С        | 1        | 100.0      | 100.0            | 100.0            | 99.8         |
| 903-SL               |          | 2        | 100.0      | 100.0            | 99.9             | 99.9         |
|                      |          | Avg.     | 100.0      | 100.0            | 100.0            | 99.9         |
| D.S. Brown<br>E-437H | <b>B</b> | 1        | 100.0      | 100.0            | 100.0            | 100.0        |
| No Seal              | A        | 1        | 100.0      | 100.0            | 100.0            | 100.0        |
|                      |          | 2        | 100.0      | 100.0            | 100.0            | 100.0        |
|                      |          | Avg.     | 100.0      | 100.0            | 100.0            | 100.0        |
| D.S. Brown<br>V-687  | С        | .1       | 100.0      | 100.0            | 100.0            | 100.0        |
| Crafco 902           | С        | 1        | 100.0      | 100.0            | 100.0            | 99.8         |

Table C-12. Cohesion effectiveness at Campo, Colorado test site.

|                      |         |          | Cohesion e | ffectiveness ov | er time, percent | joint length |
|----------------------|---------|----------|------------|-----------------|------------------|--------------|
| Material             | Config. | Rep. No. | 0 months   | 6 months        | 13 months        | 25 months    |
| Crafco 902           | Α       | 1        | 100.0      | 99.9            | 99.3             | 99.3         |
|                      |         | 2        | 100.0      | 99.9            | 98.6             | 98.3         |
|                      |         | Avg.     | 100.0      | 99.9            | 99.0             | 98.8         |
| Crafco 902           | В       | 1        | 100.0      | 99.9            | 99.4             | 99.3         |
|                      |         | 2        | 100.0      | 99.2            | 97.3             | 97.5         |
|                      |         | Avg.     | 100.0      | 99.5            | 98.4             | 98.4         |
| Crafco 902           | С       | 1        | 100.0      | 99.9            | 99.7             | 99.7         |
|                      |         | 2        | 100.0      | 100.0           | 99.8             | 99.8         |
|                      |         | Avg.     | 100.0      | 99.9            | 99.8             | 99.8         |
| Crafco 902           | G       | 1        | 100.0      | 99.4            | 98.1             | 97.9         |
|                      |         | 2        | 100.0      | 100.0           | 96.8             | 96.0         |
|                      |         | Avg.     | 100.0      | 99.7            | 97.4             | 96.9         |
| Crafco               | A       | 1        | 100.0      | 100.0           | 100.0            | 100.0        |
| 903-SL               |         | 2        | 100.0      | 100.0           | 99.9             | 99.9         |
|                      |         | Avg.     | 100.0      | 100.0           | 99.9             | 99.9         |
| Crafco               | В       | 1        | 100.0      | 100.0           | 100.0            | 100.0        |
| 903-SL               |         | 2        | 100.0      | 100.0           | 100.0            | 99.9         |
|                      |         | Avg.     | 100.0      | 100.0           | 100.0            | 100.0        |
| Crafco               | С       | 1        | 100.0      | 100.0           | 100.0            | 100.0        |
| 903-SL               |         | 2        | 100.0      | 100.0           | 100.0            | 100.0        |
|                      |         | Avg.     | 100.0      | 100.0           | 100.0            | 100.0        |
| D.S. Brown<br>E-437H | В       | 1        | 100.0      | 100.0           | 100.0            | 100.0        |
| No Seal              | Α       | 1        | 100.0      | 100.0           | 100.0            | 100.0        |
|                      |         | 2        | 100.0      | 100.0           | 100.0            | 100.0        |
|                      |         | Avg.     | 100.0      | 100.0           | 100.0            | 100.0        |
| D.S. Brown<br>V-687  | С       | 1        | 100.0      | 100.0           | 100.0            | 100.0        |
| Crafco 902           | C       | 1        | 100.0      | 100.0           | 99.6             | 99.5         |

Table C-13. Spall effectiveness at Campo, Colorado test site.

|                      |         |          | Spall effe | ctiveness over | time, percent jo | int length |
|----------------------|---------|----------|------------|----------------|------------------|------------|
| Material             | Config. | Rep. No. | 0 months   | 6 months       | 13 months        | 25 months  |
| Crafco 902           | A       | 1        | 100.0      | 100.0          | 99.5             | 98.9       |
|                      |         | 2        | 100.0      | 99.9           | 99.5             | 99.1       |
|                      |         | Avg.     | 100.0      | 100.0          | 99.5             | 99.0       |
| Crafco 902           | В       | 1        | 100.0      | 99.5           | 99.0             | 98.7       |
|                      |         | 2        | 100.0      | 99.7           | 99.2             | 99.0       |
|                      |         | Avg.     | 100.0      | 99.6           | 99.1             | 98.8       |
| Crafco 902           | С       | 1        | 100.0      | 99.8           | 99.5             | 99.1       |
|                      |         | 2        | 100.0      | 99.8           | 99.5             | 99.1       |
|                      |         | Avg.     | 100.0      | 99.8           | 99.5             | 99.1       |
| Crafco 902           | G       | 1        | 100.0      | 99.6           | 99.3             | 99.2       |
|                      |         | 2        | 100.0      | 99.9           | 99.6             | 99.6       |
|                      |         | Avg.     | 100.0      | 99.7           | 99.4             | 99.4       |
| Crafco               | Α       | 1        | 100.0      | 99.9           | 99.5             | 98.9       |
| 903-SL               |         | 2        | 100.0      | 99.9           | 98.9             | 98.4       |
|                      |         | Avg.     | 100.0      | 99.9           | 99.2             | 98.6       |
| Crafco               | В       | 1        | 100.0      | 99.3           | 98.6             | 98.6       |
| 903-SL               |         | 2        | 100.0      | 99.5           | 99.0             | 98.6       |
|                      |         | Avg.     | 100.0      | 99.4           | 98.8             | 98.6       |
| Crafco               | С       | 1        | 100.0      | 99.8           | 99.6             | 99.4       |
| 903-SL               |         | 2        | 100.0      | 99.7           | 99.1             | 98.8       |
|                      |         | Avg.     | 100.0      | 99,7           | 99.4             | 99.1       |
| D.S. Brown<br>E-437H | В       | 1        | 100.0      | 100.0          | 99.8             | 99.5       |
| No Seal              | Α       | 1        | 100.0      | 98.5           | 98.1             | 97.2       |
|                      |         | 2        | 100.0      | 99.3           | 99.1             | 99.0       |
|                      |         | Avg.     | 100.0      | 98.9           | 98.6             | 98.1       |
| D.S. Brown<br>V-687  | С       | 1        | 100.0      | 99.9           | 99.3             | 99.2       |
| Crafco 902           | С       | 1 1      | 100.0      | 99.8           | 99.6             | 99.2       |

Table C-14. Twist effectiveness at Campo, Colorado test site.

|                      |         |          | Twist effe | Twist effectiveness over time, percent joint length |           |           |  |  |  |
|----------------------|---------|----------|------------|-----------------------------------------------------|-----------|-----------|--|--|--|
| Material             | Config. | Rep. No. | 0 months   | 6 months                                            | 13 months | 25 months |  |  |  |
| D.S. Brown<br>E-437H | В       | 1        | 100.0      | 97.1                                                | 95.9      | 96.4      |  |  |  |
| D.S. Brown<br>V-687  | C       | 1        | 100.0      | 88.3                                                | 88.3      | 88.3      |  |  |  |

Table C-15. Compression set effectiveness at Campo, Colorado test site.

|                      |         |          | Comp. set effectiveness over time, percent joint length |          |           |           |  |  |
|----------------------|---------|----------|---------------------------------------------------------|----------|-----------|-----------|--|--|
| Material             | Config. | Rep. No. | 0 months                                                | 6 months | 13 months | 25 months |  |  |
| D.S. Brown<br>E-437H | В       | 1        | 100.0                                                   | 93.9     | 79.2      | 74.8      |  |  |
| D.S. Brown<br>V-687  | C       | 1        | 100.0                                                   | 100.0    | 98.1      | 98.1      |  |  |

Table C-16. Gap effectiveness at Campo, Colorado test site.

|                      |         |          | Gap effectiveness over time, percent joint length |          |           |           |  |  |  |
|----------------------|---------|----------|---------------------------------------------------|----------|-----------|-----------|--|--|--|
| Material             | Config. | Rep. No. | 0 months                                          | 6 months | 13 months | 25 months |  |  |  |
| D.S. Brown<br>E-437H | В       | 1        | 100.0                                             | 93.8     | 96.5      | 97.8      |  |  |  |
| D.S. Brown<br>V-687  | C       | 1        | 100.0                                             | 99.9     | 100.0     | 100.0     |  |  |  |

Table C-17. Transverse joint seal performance summary at Wells, Nevada test site.

| Material      | Cnfg. | Rep.<br>No. | Partial-depth<br>adhesion<br>effectiveness,<br>% edge length | Full-depth<br>adhesion<br>effectiveness,<br>% joint length | Full-depth<br>cohesion<br>effectiveness,<br>% joint length | Partial-depth<br>spall<br>effectiveness,<br>% joint length | Full-depth<br>spall<br>effectiveness,<br>% joint length | Overall effectiveness, % joint length |
|---------------|-------|-------------|--------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------|---------------------------------------|
| Crafco 902    | С     | 1           | 98.0                                                         | 99.2                                                       | 99.0                                                       | 88.1                                                       | 85.4                                                    | 83.7                                  |
| Crafco 902    | С     | 2           | 99.7                                                         | 99.7                                                       | 99.1                                                       | 84.7                                                       | 86.0                                                    | 84.9                                  |
| -             |       | Avg.        | 98.8                                                         | 99.5                                                       | 99.1                                                       | 86.4                                                       | 85.7                                                    | 84.3                                  |
| Crafco 903-SL | С     | 1           | 92.5                                                         | 98.7                                                       | 99.8                                                       | 86.9                                                       | 86.0                                                    | 84.4                                  |
| Crafco 903-SL | С     | 2           | 99.8                                                         | 99.5                                                       | 99.6                                                       | 87.1                                                       | 90.7                                                    | 89.8                                  |
|               |       | Avg.        | 96.0                                                         | 99.0                                                       | 99.7                                                       | 87.0                                                       | 88.2                                                    | 87.0                                  |
| Dow 888       | С     | 1           | 98.0                                                         | 99.3                                                       | 99.9                                                       | 87.0                                                       | 95.7                                                    | 94.9                                  |
| Dow 888       | С     | 2           | 99.4                                                         | 99.9                                                       | 99.7                                                       | 84.2                                                       | 94.2                                                    | 93.8                                  |
|               |       | Avg.        | 98.8                                                         | 99.7                                                       | 99.8                                                       | 85.4                                                       | 94.8                                                    | 94.3                                  |
| Dow 888       | С     | 3           | 97.1                                                         | 96.9                                                       | 99.9                                                       | 85.7                                                       | 82.4                                                    | 79.2                                  |
| Dow 888       | С     | 4           | 97.2                                                         | 99.2                                                       | 99.7                                                       | 81.0                                                       | 84.8                                                    | 83.7                                  |
| Dow 888-SL    | С     | 1           | 98.5                                                         | 98.5                                                       | 100.0                                                      | 90.2                                                       | 91.8                                                    | 90.3                                  |
| Dow 888-SL    | С     | 2           | 97.2                                                         | 97.4                                                       | 99.9                                                       | 91.9                                                       | 92.6                                                    | 89.9                                  |
|               |       | Avg.        | 97.8                                                         | 97.9                                                       | 100.0                                                      | 91.1                                                       | 92.2                                                    | 90.1                                  |
| Dow 890-SL    | С     | 1           | 91.6                                                         | 97.4                                                       | 100.0                                                      | 92.4                                                       | 89.7                                                    | 87.1                                  |
| Dow 890-SL    | С     | 2           | 76.5                                                         | 97.8                                                       | 100.0                                                      | 89.6                                                       | 93.3                                                    | 91.1                                  |
|               |       | Avg.        | 83.2                                                         | 97.6                                                       | 100.0                                                      | 90.8                                                       | 91.7                                                    | 89.3                                  |
| Mobay 960     | С     | 1           | 96.1                                                         | 99.3                                                       | 99.7                                                       | 81.5                                                       | 87.3                                                    | 86.3                                  |
| Mobay 960     | С     | 2           | 99.2                                                         | 99.7                                                       | 99.7                                                       | 85.3                                                       | 85.6                                                    | 84.9                                  |
|               |       | Avg.        | 97.7                                                         | 99.5                                                       | 99.7                                                       | 83.5                                                       | 86.4                                                    | 85.6                                  |
| Polyethylene  | F     | 1           | 100.0                                                        | 100.0                                                      | 0.0                                                        | 94.9                                                       | 94.2                                                    | 0.0                                   |
| Unsealed      | С     | 1           | 100.0                                                        | 100.0                                                      | 100.0                                                      | 95.8                                                       | 90.8                                                    | 90.8                                  |

Table C-18. Overall transverse joint seal effectiveness at Wells, Nevada test site.

|              | 3 20 40 |          | Ove      | rall effectivene | ss over time, j | percent joint le | ength     |
|--------------|---------|----------|----------|------------------|-----------------|------------------|-----------|
| Material     | Config. | Rep. No. | 0 months | 37 months        | 50 months       | 62 months        | 74 months |
| Crafco 902   | С       | 1        | 100.0    | 96.1             | 92.0            | 86.0             | 83.7      |
|              |         | 2        | 100.0    | 97.2             | 94.5            | 88.8             | 84.9      |
|              |         | Avg.     | 100.0    | 96.7             | 93.3            | 87.4             | 84.3      |
| Crafco       | С       | 1        | 100.0    | 96.3             | 94.9            | 89.1             | 84.4      |
| 903-SL       |         | 2        | 100.0    | 97.4             | 95.7            | 91.7             | 89.8      |
|              |         | Avg.     | 100.0    | 96.8             | 95.3            | 90.4             | 87.1      |
| Dow 888 C    | С       | 1        | 100.0    | 99.2             | 97.7            | 95.2             | 94.9      |
|              |         | 2        | 100.0    | 98.4             | 98.1            | 92.8             | 93.8      |
|              |         | Avg.     | 100.0    | 98.8             | 97.9            | 94.0             | 94.3      |
| Dow 888      | С       | 1        | 100.0    | 95.0             | 94.4            | 86.2             | 83.7      |
| Dow 888      | С       | 1        | 100.0    | 96.8             | 95.9            | 83.3             | 79.2      |
| Dow          | С       | 1        | 100.0    | 98.4             | 96.9            | 92.1             | 90.3      |
| 888-SL       |         | 2        | 100.0    | 96.9             | 97.2            | 92.4             | 89.9      |
|              |         | Avg.     | 100.0    | 97.7             | 97.0            | 92.2             | 90.1      |
| Dow          | С       | 1        | 100.0    | 98.9             | 98.5            | 91.8             | 87.1      |
| 890-SL       |         | 2        | 100.0    | 97.8             | 97.1            | 93.6             | 91.1      |
|              |         | Avg.     | 100.0    | 98.4             | 97.8            | 92.7             | 89.1      |
| D.S. Brown   | D       | 1        | 100.0    | 96.3             | 73.8            | 51.7             | 46.1      |
| V-812        |         | 2        | 100.0    | 97.8             | 73.3            | 36.7             | 24.7      |
|              |         | Avg.     | 100.0    | 97.0             | 73.5            | 44.2             | 35.4      |
| Mobay 960    | С       | 1        | 100.0    | 97.9             | 94.1            | 88.7             | 86.3      |
|              |         | 2        | 100.0    | 96.9             | 92.8            | 88.0             | 84.9      |
|              |         | Avg.     | 100.0    | 97.4             | 93.5            | 88.4             | 85.6      |
| No Seal      | C.      | 1        | 100.0    | 100.0            | 93.3            | 91.3             | 90.8      |
| Polyethylene | F       | 1        | 100.0    | 0.0              | 0.0             | 0.0              | 0.0       |

Table C-19. Adhesion effectiveness at Wells, Nevada test site.

|              |         |          | Adhe     | sion effectiver | ess over time, | percent joint | length    |
|--------------|---------|----------|----------|-----------------|----------------|---------------|-----------|
| Material     | Config. | Rep. No. | 0 months | 37 months       | 50 months      | 62 months     | 74 months |
| Crafco 902   | С       | 1        | 100.0    | 100.0           | 99.6           | 99.5          | 99.2      |
|              |         | 2        | 100.0    | 100.0           | 99.9           | 99.8          | 99.7      |
|              |         | Avg.     | 100.0    | 100.0           | 99.7           | 99.7          | 99.5      |
| Crafco       | C       | 1        | 100.0    | 99.8            | 99.3           | 99.2          | 98.7      |
| 903-SL       |         | 2        | 100.0    | 100.0           | 99.8           | 99.9          | 99.5      |
|              |         | Avg.     | 100.0    | 99.9            | 99.5           | 99.5          | 99.1      |
| Dow 888      | С       | 1        | 100.0    | 100.0           | 99.9           | 99.4          | 99.2      |
|              |         | 2        | 100.0    | 100.0           | 99.9           | 99.1          | 99.9      |
|              |         | Avg.     | 100.0    | 100.0           | 99.9           | 99.3          | 99.6      |
| Dow 888      | С       | 1        | 100.0    | 99.6            | 99.7           | 97.8          | 96.5      |
| ta year and  |         | 1        | 100.0    | 100.0           | 100.0          | 99.5          | 99.2      |
| Dow          | С       | 1        | 100.0    | 100.0           | 99.7           | 99.2          | 98.5      |
| 888-SL       |         | 2        | 100.0    | 100.0           | 99.8           | 99.3          | 97.4      |
|              |         | Avg.     | 100.0    | 100.0           | 99.8           | 99.3          | 97.9      |
| Dow          | C       | 1        | 100.0    | 99.9            | 99.7           | 99.0          | 97.8      |
| 890-SL       |         | 2        | 100.0    | 99.9            | 99.7           | 99.5          | 97.8      |
|              |         | Avg.     | 100.0    | 99.9            | 99.7           | 99.2          | 97.8      |
| D.S. Brown   | D       | 1        | 100.0    | 100.0           | 100.0          | 100.0         | 100.0     |
| V-812        |         | 2        | 100.0    | 100.0           | 100.0          | 100.0         | 100.0     |
|              |         | Avg.     | 100.0    | 100.0           | 100.0          | 100.0         | 100.0     |
| Mobay 960    | С       | 1        | 100.0    | 99.9            | 99.5           | 99.3          | 99.2      |
|              |         | 2        | 100.0    | 100.0           | 99.9           | 99.9          | 99.7      |
|              |         | Avg.     | 100.0    | 99.9            | 99.7           | 99.6          | 99.4      |
| No Seal      | C       | 1        | 100.0    | 100.0           | 100.0          | 100.0         | 100.0     |
| Polyethylene | F       | 1        | 100.0    | 100.0           | 100.0          | 100.0         | 100.0     |

Table C-20. Cohesion effectiveness at Wells, Nevada test site.

|              |         |          | Col      | nesion effective | ness over time, | percent joint le | ngth      |
|--------------|---------|----------|----------|------------------|-----------------|------------------|-----------|
| Material     | Config. | Rep. No. | 0 months | 37 months        | 50 months       | 62 months        | 74 months |
| Crafco 902   | С       | 1        | 100.0    | 99.7             | 99.3            | 99.1             | 99.0      |
|              |         | 2        | 100.0    | 99.8             | 99.2            | 99.3             | 99.1      |
|              |         | Avg.     | 100.0    | 99.8             | 99.3            | 99.2             | 99.1      |
| Crafco       | С       | 1        | 100.0    | 100.0            | 99.9            | 99.8             | 99.8      |
| 903-SL       |         | 2        | 100.0    | 100.0            | 99.9            | 99.7             | 99.7      |
|              |         | Avg.     | 100.0    | 100.0            | 99.9            | 99.8             | 99.7      |
| Dow 888      | С       | 1        | 100.0    | 100.0            | 100.0           | 99.7             | 99.7      |
|              |         | 2        | 100.0    | 100.0            | 100.0           | 99.7             | 99.7      |
|              |         | Avg.     | 100.0    | 100.0            | 100.0           | 99.7             | 99.7      |
| Dow 888      | С       | 1        | 100.0    | 95.7             | 95.2            | 99.9             | 95.9      |
|              |         | 1        | 100.0    | 100.0            | 99.9            | 99.7             | 99.7      |
| Dow          | С       | 1        | 100.0    | 100.0            | 100.0           | 100.0            | 100.0     |
| 888-SL       |         | 2        | 100.0    | 99.9             | 99.9            | 99.9             | 99.9      |
|              |         | Avg.     | 100.0    | 100.0            | 100.0           | 100.0            | 100.0     |
| Dow          | С       | 1        | 100.0    | 100.0            | 100.0           | 99.9             | 99.9      |
| 890-SL       |         | 2        | 100.0    | 100.0            | 100.0           | 100.0            | 100.0     |
|              |         | Avg.     | 100.0    | 100.0            | 100.0           | 100.0            | 100.0     |
| D.S. Brown   | D       | 1        | 100.0    | 100.0            | 100.0           | 100.0            | 100.0     |
| V-812        |         | 2        | 100.0    | 100.0            | 100.0           | 100.0            | 100.0     |
|              |         | Avg.     | 100.0    | 100.0            | 100.0           | 100.0            | 100.0     |
| Mobay 960    | C       | 1        | 100.0    | 100.0            | 99.7            | 99.8             | 99.7      |
|              |         | 2        | 100.0    | 100.0            | 99.9            | 99.7             | 99.7      |
|              |         | Avg.     | 100.0    | 100.0            | 99.8            | 99.8             | 99.7      |
| No Seal      | С       | 1        | 100.0    | 100.0            | 100.0           | 100.0            | 100.0     |
| Polvethylene | P       |          | 100.0    | 0.0              | 0.0             | 0.0              | 0.0       |

Table C-21. Spall effectiveness at Wells, Nevada test site.

|              | Config. |          | Spall effectiveness over time, percent joint length |           |           |           |           |  |
|--------------|---------|----------|-----------------------------------------------------|-----------|-----------|-----------|-----------|--|
| Material     |         | Rep. No. | 0 months                                            | 37 months | 50 months | 62 months | 74 months |  |
| Crafco 902   | С       | 1        | 100.0                                               | 96.4      | 93.1      | 87.4      | 85.4      |  |
|              |         | 2        | 100.0                                               | 97.4      | 95.4      | 89.7      | 86.0      |  |
|              |         | Avg.     | 100.0                                               | 96.9      | 94.3      | 88.5      | 85.7      |  |
| Crafco       | С       | 1        | 100.0                                               | 96.5      | 95.7      | 90.1      | 86.0      |  |
| 903-SL       |         | 2        | 100.0                                               | 97.2      | 95.6      | 91.9      | 90.6      |  |
|              |         | Avg.     | 100.0                                               | 96.8      | 95.6      | 91.0      | 88.3      |  |
| Dow 888      | С       | 1        | 100.0                                               | 99.2      | 97.9      | 95.9      | 95.7      |  |
|              |         | 2        | 100.0                                               | 98.4      | 98.2      | 94.9      | 94.2      |  |
|              |         | Avg.     | 100.0                                               | 98.8      | 98.1      | 95.4      | 94.9      |  |
| Dow 888      | С       | 1        | 100.0                                               | 97.1      | 96.2      | 87.2      | 84.2      |  |
|              |         | 1        | 100.0                                               | 95.0      | 95.2      | 87.0      | 84.8      |  |
| Dow          | С       | 1        | 100.0                                               | 98.4      | 97.2      | 92.8      | 91.8      |  |
| 888-SL       |         | 2        | 100.0                                               | 97.0      | 97.4      | 93.1      | 92.6      |  |
|              |         | Avg.     | 100.0                                               | 97.7      | 97.3      | 93.0      | 92.2      |  |
| Dow          | С       | 1        | 100.0                                               | 97.9      | 97.8      | 92.0      | 88.1      |  |
| 890-SL       | •       | 2        | 100.0                                               | 97.9      | 97.4      | 94.1      | 93.3      |  |
|              |         | Avg.     | 100.0                                               | 97.9      | 97.6      | 93.1      | 90.7      |  |
| D.S. Brown   | D       | 1        | 100.0                                               | 99.2      | 98.7      | 97.9      | 97.7      |  |
| V-812        |         | 2        | 100.0                                               | 99.0      | 98.7      | 98.4      | 97.9      |  |
|              |         | Avg.     | 100.0                                               | 99.1      | 98.7      | 98.2      | 97.8      |  |
| Mobay 960    | С       | 1        | 100.0                                               | 97.7      | 94.7      | 89.7      | 87.4      |  |
|              |         | 2        | 100.0                                               | 96.9      | 93.1      | 88.3      | 85.6      |  |
|              |         | Avg.     | 100.0                                               | 97.3      | 93.9      | 89.0      | 86.5      |  |
| No Seal      | С       | 1        | 100.0                                               | 100.0     | 93.3      | 91.3      | 90.8      |  |
| Polyethylene | F       | 1        | 100.0                                               | 99.8      | 96.3      | 94.8      | 94.4      |  |

Table C-22. Twist effectiveness at Wells, Nevada test site.

| Material            | Config. | Rep. No. | Twist effectiveness over time, percent joint length |           |           |           |           |  |  |
|---------------------|---------|----------|-----------------------------------------------------|-----------|-----------|-----------|-----------|--|--|
|                     |         |          | 0 months                                            | 37 months | 50 months | 62 months | 74 months |  |  |
| D.S. Brown<br>V-812 | D       | 1        | 100.0                                               | 97.2      | 88.2      | 88.0      | 87.6      |  |  |
|                     |         | 2        | 100.0                                               | 98.8      | 96.1      | 95.0      | 95.1      |  |  |
|                     |         | Avg.     | 100.0                                               | 98.0      | 92.2      | 91.5      | 91.4      |  |  |

Table C-23. Compression set effectiveness at Wells, Nevada test site.

|                     |         |          | Comp. set effectiveness over time, percent joint length |           |           |           |           |  |
|---------------------|---------|----------|---------------------------------------------------------|-----------|-----------|-----------|-----------|--|
| Material            | Config. | Rep. No. | 0 months                                                | 37 months | 50 months | 62 months | 74 months |  |
| D.S. Brown<br>V-812 | Ď       | 1        | 100.0                                                   | 100.0     | 94.3      | 77.1      | 71.0      |  |
|                     |         | 2        | 100.0                                                   | 100.0     | 80.3      | 45.1      | 42.4      |  |
|                     |         | Avg.     | 100.0                                                   | 100.0     | 87.3      | 61.1      | 56.7      |  |

Table C-24. Gap effectiveness at Wells, Nevada test site.

| Material            | Config. | Rep. No. | Gap effectiveness over time, percent joint length |           |           |           |           |  |
|---------------------|---------|----------|---------------------------------------------------|-----------|-----------|-----------|-----------|--|
|                     |         |          | 0 months                                          | 37 months | 50 months | 62 months | 74 months |  |
| D.S. Brown<br>V-812 | D       | 1        | 100.0                                             | 100.0     | 100.0     | 95.6      | 90.1      |  |
|                     |         | 2        | 100.0                                             | 100.0     | 100.0     | 98.6      | 89.4      |  |
|                     |         | Avg.     | 100.0                                             | 100.0     | 100.0     | 97.1      | 89.7      |  |

Table C-25. Transverse joint seal performance summary at Tremonton, Utah test site.

| Material   | Cnfg. | Rep.<br>No. | Partial-depth<br>adhesion<br>effectiveness,<br>% edge length | Full-depth<br>adhesion<br>effectiveness,<br>% joint length | Full-depth<br>cohesion<br>effectiveness,<br>% joint length | Partial-depth<br>spall<br>effectiveness,<br>% joint length | Full-depth<br>spall<br>effectiveness,<br>% joint length | Overall effectiveness, % joint length |
|------------|-------|-------------|--------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------|---------------------------------------|
| Dow 888-SL | С     | 1           | 99.6                                                         | 64.1                                                       | 100.0                                                      | 96.9                                                       | 92.8                                                    | 56.9                                  |
| Dow 888-SL | С     | 2           | 99.8                                                         | 46.5                                                       | 99.9                                                       | 98.3                                                       | 94.3                                                    | 40.7                                  |
|            |       | Avg.        | 99.7                                                         | 55.3                                                       | 100.0                                                      | 97.6                                                       | 93.5                                                    | 48.8                                  |
| Dow 890-SL | Α     | 1           | 99.5                                                         | 84.7                                                       | 93.9                                                       | 92.6                                                       | 96.4                                                    | 74.9                                  |
| Dow 890-SL | Α     | 2           | 99.3                                                         | 91.3                                                       | 98.3                                                       | 94.0                                                       | 95.9                                                    | 85.5                                  |
|            |       | Avg.        | 99.4                                                         | 88.0                                                       | 96.1                                                       | 93.3                                                       | 96.2                                                    | 80.2                                  |
| Dow 890-SL | Е     | 1           | 96.9                                                         | 89.2                                                       | 99.2                                                       | 92.2                                                       | 92.5                                                    | 80.8                                  |
| Koch 9005  | С     | 1           | 60.6                                                         | 9.3                                                        | 96.9                                                       | 97.1                                                       | 97.8                                                    | 4.1                                   |
| Koch 9005  | Ç     | 2           | 55.4                                                         | 18.5                                                       | 98.6                                                       | 96.2                                                       | 97.3                                                    | 14.4                                  |
|            |       | Avg.        | 58.0                                                         | 13.9                                                       | 97.7                                                       | 96.7                                                       | 97.6                                                    | 9.2                                   |
| Koch 9012  | C     | 1           | 81.8                                                         | 33.8                                                       | 65.4                                                       | 96.1                                                       | 98.1                                                    | 0.0                                   |
| Koch 9012  | С     | 2           | 89.4                                                         | 16.6                                                       | 84.5                                                       | 97.9                                                       | 99.1                                                    | 0.2                                   |
|            |       | Avg.        | 85.6                                                         | 25.2                                                       | 74.9                                                       | 97.0                                                       | 98.6                                                    | 0.0                                   |
| Mobay 960  | С     | 1           | 96.6                                                         | 99.9                                                       | 99.8                                                       | 91.7                                                       | 94.2                                                    | 93.9                                  |
| Mobay 960  | С     | 2           | 97.7                                                         | 99.6                                                       | 99.8                                                       | 91.6                                                       | 94.5                                                    | 93.9                                  |
|            |       | Avg.        | 97.1                                                         | 99.7                                                       | 99.8                                                       | 91.6                                                       | 94.4                                                    | 93.9                                  |
| Mobay 960  | С     | 1           | 97.9                                                         | 99.7                                                       | 100.0                                                      | 94.4                                                       | 95.8                                                    | 95.5                                  |
| Mobay 960  | С     | 2           | 89.4                                                         | 99.0                                                       | 99.9                                                       | 90.8                                                       | 93.0                                                    | 92.0                                  |
| ,          |       | Avg.        | 93.7                                                         | 99.4                                                       | 100.0                                                      | 92.6                                                       | 94.4                                                    | 93.8                                  |
| Roshek     | Е     | 1           | 100.0                                                        | 92.5                                                       | 27.7                                                       | 97.3                                                       | 96.7                                                    | 16.8                                  |
| No Seal    | Α     | 1           | 100.0                                                        | 100.0                                                      | 100.0                                                      | 95.0                                                       | 96.3                                                    | 96.3                                  |
| No Seal    | A     | 2           | 100.0                                                        | 100.0                                                      | 100.0                                                      | 95.1                                                       | 98.3                                                    | 98.3                                  |
|            | A     | Avg.        | 100.0                                                        | 100.0                                                      | 100.0                                                      | 95.1                                                       | 97.3                                                    | 97.3                                  |
| No Seal    | Е     | 1           | 100.0                                                        | 100.0                                                      | 100.0                                                      | 88.9                                                       | 90.0                                                    | 90.0                                  |

Table C-26. Overall transverse joint seal effectiveness at Tremonton, Utah test site.

|               |         |          | Overa    | all effectivene | ss over time, | percent joint | length   |
|---------------|---------|----------|----------|-----------------|---------------|---------------|----------|
| Material      | Config. | Rep. No. | 0 months | 47 months       | 61 months     | 73 months     | 85 month |
| Dow           | C       | 1        | 100.0    | 94.6            | 74.8          | 71.3          | 56.9     |
| 888-SL        |         | 2        | 100.0    | 92.2            | 67.3          | 52.3          | 40.7     |
|               |         | Avg.     | 100.0    | 93.4            | 71.1          | 61.8          | 48.8     |
| Dow           | A       | 1        | 100.0    | 98.2            | 92.9          | 89.2          | 74.9     |
| 890-SL        |         | 2        | 100.0    | 97.9            | 93.4          | 89.7          | 85.5     |
|               |         | Avg.     | 100.0    | 98.1            | 93.2          | 89.5          | 80.2     |
| Dow<br>890-SL | Е       | 1        | 100.0    | 88.6            | 86.6          | 83.7          | 80.9     |
| Koch 9005     | С       | 1        | 100.0    | 72.8            | 36.3          | 17.5          | 4.5      |
|               |         | 2        | 100.0    | 59.7            | 29.2          | 20.7          | 15.2     |
|               |         | Avg.     | 100.0    | 66.3            | 32.8          | 19.1          | 9.9      |
| Koch 9012     | С       | 1        | 100.0    | 70.3            | 32.1          | 12.2          | 0.2      |
|               |         | 2        | 100.0    | 36.8            | 9.7           | 5.0           | 0.9      |
|               |         | Avg.     | 100.0    | 53.5            | 20.9          | 8.6           | 0.5      |
| Kold Seal     | В       | 1        | 100.0    | 90.4            | 0.0           | 0.0           | 0.0      |
| Neo Loop      |         | 2        | 100.0    | 74.3            | 8.7           | 5.5           | 3.9      |
|               |         | Avg.     | 100.0    | 82.3            | 4.3           | 2.7           | 1.9      |
| Mobay 960     | С       | 1        | 100.0    | 99.2            | 98.4          | 96.8          | 95.5     |
|               |         | 2        | 100.0    | 98.1            | 96.2          | 93.9          | 92.0     |
|               |         | Avg.     | 100.0    | 98.7            | 97.3          | 95.3          | 93.8     |
| Mobay 960     | С       | 1        | 100.0    | 97.2            | 96.1          | 95.1          | 93.9     |
|               |         | 2        | 100.0    | 98.1            | 96.8          | 95.5          | 93.9     |
|               |         | Avg.     | 100.0    | 97.7            | 96.4          | 95.3          | 93.9     |
| Roshek        | Е       | 1        | 100.0    | 36.6            | 28.5          | 18.3          | 17.7     |
| Esco PV 687   | С       | 1        | 100.0    | 79.6            | 37.9          | 37.4          | 37.1     |
|               |         | 2        | 100.0    | 88.5            | 45.9          | 29.0          | 26.1     |
|               |         | Avg.     | 100.0    | 84.1            | 41.9          | 33.2          | 31.6     |
| No Seal       | Α       | 1        | 100.0    | 97.3            | 96.8          | 96.5          | 96.3     |
|               |         | 2        | 100.0    | 98.8            | 98.5          | 98.4          | 98.3     |
|               |         | Avg.     | 100.0    | 98.1            | 97.6          | 97.4          | 97.3     |
| No Seal       | В       | 1        | 100.0    | 92.9            | 90.7          | 90.4          | 90.0     |

Table C-27. Adhesion effectiveness at Tremonton, Utah test site.

|               | Adaption of the |          | Adl      | nesion effective | ness over time, | percent joint le | ngth      |
|---------------|-----------------|----------|----------|------------------|-----------------|------------------|-----------|
| Material      | Config.         | Rep. No. | 0 months | 47 months        | 61 months       | 73 months        | 85 months |
| Dow           | С               | 1        | 100.0    | 97.5             | 79.3            | 77.7             | 64.1      |
| 888-SL        |                 | 2        | 100.0    | 94.2             | 70.8            | 57.2             | 46.5      |
|               |                 | Avg.     | 100.0    | 95.8             | 75.1            | 67.4             | 55.3      |
| Dow           | A               | 1        | 100.0    | 99.9             | 99.5            | 98.1             | 84.7      |
| 890-SL        |                 | 2        | 100.0    | 99.2             | 97.7            | 95.0             | 91.3      |
|               |                 | Avg.     | 100.0    | 99.6             | 98.6            | 96.5             | 88.0      |
| Dow<br>890-SL | Е               | 1        | 100.0    | 96.2             | 93.3            | 91.1             | 89.2      |
| Koch 9005     | С               | 1        | 100.0    | 75.1             | 39.1            | 20.7             | 9.3       |
|               |                 | 2        | 100.0    | 63.1             | 32.0            | 23.8             | 18.5      |
|               |                 | Avg.     | 100.0    | 69.1             | 35.5            | 22.2             | 13.9      |
| Koch 9012     | C               | 1        | 100.0    | 75.9             | 35.4            | 24.0             | 33.8      |
|               |                 | 2        | 100.0    | 37.0             | 11.9            | 8.2              | 16.6      |
|               |                 | Avg.     | 100.0    | 56.4             | 23.7            | 16.1             | 25.2      |
| Kold Seal     | В               | 1        | 100.0    | 100.0            | 100.0           | 100.0            | 100.0     |
| Neo Loop      |                 | 2        | 100.0    | 100.0            | 100.0           | 100.0            | 100.0     |
|               |                 | Avg.     | 100.0    | 100.0            | 100.0           | 100.0            | 100.0     |
| Mobay 960     | С               | 1        | 100.0    | 100.0            | 99.9            | 99.9             | 99.7      |
|               |                 | 2        | 100.0    | 100.0            | 99.8            | 99.7             | 99.0      |
|               |                 | Avg.     | 100.0    | 100.0            | 99.9            | 99.8             | 99.4      |
| Mobay 960     | С               | 1        | 100.0    | 100.0            | 99.8            | 99.9             | 99.9      |
|               |                 | 2        | 100.0    | 100.0            | 99.9            | 99.9             | 99.6      |
|               |                 | Avg.     | 100.0    | 100.0            | 99.9            | 99.9             | 99.7      |
| Roshek        | С               | 1        | 100.0    | 92.4             | 93.6            | 93.0             | 92.5      |
| Esco PV 687   | С               | 1        | 100.0    | 100.0            | 100.0           | 100.0            | 100.0     |
|               |                 | 2        | 100.0    | 100.0            | 100.0           | 100.0            | 100.0     |
|               |                 | Avg.     | 100.0    | 100.0            | 100.0           | 100.0            | 100.0     |
| No Seal       | Α               | 1        | 100.0    | 100.0            | 100.0           | 100.0            | 100.0     |
|               |                 | 2        | 100.0    | 100.0            | 100.0           | 100.0            | 100.0     |
|               |                 | Avg.     | 100.0    | 100.0            | 100.0           | 100.0            | 100.0     |
| No Seal       | Е               | 1        | 100.0    | 100.0            | 100.0           | 100.0            | 100.0     |

Table C-28. Cohesion effectiveness at Tremonton, Utah test site.

| ggggawatiwa na waka |            |          | Col      | nesion effective | ness over time, | percent joint le | ngth      |
|---------------------|------------|----------|----------|------------------|-----------------|------------------|-----------|
| Material            | Config.    | Rep. No. | 0 months | 47 months        | 61 months       | 73 months        | 85 months |
| Dow                 | C          | 10       | 100.0    | 100.0            | 100.0           | 100.0            | 100.0     |
| 888-SL              |            | 2        | 100.0    | 100.0            | 99.9            | 99.9             | 99.9      |
|                     | 1 14 4 0 C | Avg.     | 100.0    | 100.0            | 100.0           | 100.0            | 100.0     |
| Dow                 | Α          | 1        | 100.0    | 99.5             | 96.1            | 94.4             | 93.9      |
| 890-SL              |            | 2        | 100.0    | 99.9             | 97.8            | 98.6             | 98.3      |
|                     |            | Avg.     | 100,0    | 99.7             | 97.0            | 96.5             | 96.1      |
| Dow<br>890-SL       | В          | 1        | 100.0    | 100.0            | 100.0           | 99.6             | 99.2      |
| Koch 9005           | C          | 1        | 100.0    | 99.2             | 99.3            | 98.8             | 96.9      |
|                     |            | 2        | 100.0    | 97.5             | 99.0            | 98.7             | 98.6      |
|                     |            | Avg.     | 100.0    | 98.4             | 99.1            | 98.8             | 97.7      |
| Koch 9012           | C          | 1        | 100.0    | 100.0            | 100.0           | 91.0             | 65.4      |
|                     |            | 2        | 100.0    | 100.0            | 93.7            | 88.8             | 84.5      |
|                     |            | Avg.     | 100.0    | 100.0            | 96.8            | 89.9             | 74.9      |
| Kold Seal           | В          | 1        | 100.0    | 100.0            | 100.0           | 100.0            | 100.0     |
| Neo Loop            |            | 2        | 100.0    | 100.0            | 100.0           | 100.0            | 100.0     |
|                     |            | Avg.     | 100.0    | 100.0            | 100.0           | 100.0            | 100.0     |
| Mobay 960           | С          | 1        | 100.0    | 100.0            | 100.0           | 100.0            | 100.0     |
|                     |            | 2        | 100.0    | 100.0            | 99.9            | 99.9             | 99.9      |
|                     |            | Avg.     | 100.0    | 100.0            | 100.0           | 100.0            | 100.0     |
| Mobay 960           | С          | 1        | 100.0    | 100.0            | 100.0           | 99.9             | 99.8      |
|                     |            | 2        | 100.0    | 100.0            | 100.0           | 99.9             | 99.8      |
|                     |            | Avg.     | 100.0    | 100.0            | 100.0           | 99.9             | 99.8      |
| Roshek              | С          | 1        | 100.0    | 43.8             | 36.6            | 27.9             | 27.7      |
| Esco PV 687         | С          | 1        | 100.0    | 100.0            | 100.0           | 100.0            | 100.0     |
|                     |            | 2        | 100.0    | 100.0            | 100.0           | 100.0            | 100.0     |
|                     |            | Avg.     | 100.0    | 100.0            | 100.0           | 100.0            | 100.0     |
| No Seal             | Α          | 1        | 100.0    | 100.0            | 100.0           | 100.0            | 100.0     |
|                     |            | 2        | 100.0    | 100.0            | 100.0           | 100.0            | 100.0     |
|                     |            | Avg.     | 100.0    | 100.0            | 100.0           | 100.0            | 100.0     |
| No Seal             | Е          | 1        | 100.0    | 100.0            | 100.0           | 100.0            | 100.0     |

Table C-29. Spall effectiveness at Tremonton, Utah test site.

|               |         |          | S        | pall effectivene | ss over time, pe | rcent joint leng | th        |
|---------------|---------|----------|----------|------------------|------------------|------------------|-----------|
| Material      | Config. | Rep. No. | 0 months | 47 months        | 61 months        | 73 months        | 85 months |
| Dow           | С       | 1        | 100.0    | 97.2             | 95.5             | 93.6             | 92.8      |
| 888-SL        |         | 2        | 100.0    | 98.0             | 96.5             | 95.2             | 94.3      |
|               |         | Avg.     | 100.0    | 97.6             | 96.0             | 94.4             | 93.5      |
| Dow           | A       | 1        | 100.0    | 98.8             | 97.6             | 96.9             | 96.4      |
| 890-SL        |         | 2        | 100.0    | 98.7             | 97.9             | 97.1             | 95.9      |
|               |         | Avg.     | 100.0    | 98.8             | 97.7             | 97.0             | 96.2      |
| Dow<br>890-SL | В       | 1        | 100.0    | 94.7             | 93.3             | 93.1             | 92.5      |
| Koch 9005     | С       | 1        | 100.0    | 98.5             | 97.9             | 97.8             | 97.8      |
|               |         | 2        | 100.0    | 98.4             | 97.9             | 97.6             | 97.3      |
|               |         | Avg.     | 100.0    | 98.4             | 97.9             | 97.7             | 97.6      |
| Koch 9012     | С       | 1        | 100.0    | 99.0             | 98.5             | 98.3             | 98.1      |
|               |         | 2        | 100.0    | 99.8             | 99.5             | 99.4             | 99.1      |
|               |         | Avg.     | 100.0    | 99.4             | 99.0             | 98.8             | 98.6      |
| Kold Seal     | В       | 1        | 100.0    | 99.9             | 98.2             | 98.1             | 97.7      |
| Neo Loop      |         | 2        | 100.0    | 99.7             | 98.5             | 98.4             | 98.3      |
|               |         | Avg.     | 100.0    | 99.8             | 98.4             | 98.2             | 98.0      |
| Mobay 960     | С       | 1        | 100.0    | 99.2             | 98.5             | 96.9             | 95.8      |
|               |         | 2        | 100.0    | 98.1             | 96.5             | 94.3             | 93.0      |
|               |         | Avg.     | 100.0    | 98.7             | 97.5             | 95.6             | 94.4      |
| Mobay 960     | С       | 1        | 100.0    | 97.2             | 96.3             | 95.4             | 94.2      |
|               |         | 2        | 100.0    | 98.1             | 96.9             | 95.7             | 94.5      |
|               |         | Avg.     | 100.0    | 97.7             | -96.6            | 95.5             | 94.4      |
| Roshek        | С       | 1        | 100.0    | 98.1             | 97.3             | 96.9             | 96.7      |
| Esco PV 687   | С       | 1        | 100.0    | 99.6             | 99.0             | 99.0             | 98.9      |
|               |         | 2        | 100.0    | 98.0             | 95.9             | 95.0             | 94.6      |
|               |         | Avg.     | 100.0    | 98.8             | 97.5             | 97.0             | 96.7      |
| No Seal       | Α       | 1        | 100.0    | 97.3             | 96.8             | 96.5             | 96.3      |
|               |         | 2        | 100.0    | 98.8             | 98.5             | 98.4             | 98.3      |
|               |         | Avg.     | 100.0    | 98.1             | 97.6             | 97.4             | 97.3      |
| No Seal       | Е       | 4        | 100.0    | 91.3             | 89.2             | 89.0             | 88.7      |

Table C-30. Twist effectiveness at Tremonton, Utah test site.

|             |         |          | Twist effectiveness over time, percent joint length |           |           |           |           |  |  |
|-------------|---------|----------|-----------------------------------------------------|-----------|-----------|-----------|-----------|--|--|
| Material C  | Config. | Rep. No. | 0 months                                            | 47 months | 61 months | 73 months | 85 months |  |  |
| Kold Seal   | В       | 1        | 100.0                                               | 99.8      | 99.8      | 99.5      | 99.7      |  |  |
| Neo Loop    | 2       | 100.0    | 100.0                                               | 100.0     | 100.0     | 100.0     |           |  |  |
|             |         | Avg.     | 100.0                                               | 99.9      | 99.9      | 99.7      | 99.9      |  |  |
| Esco PV 687 | С       | 1        | 100.0                                               | 79.9      | 68.1      | 79.3      | 83.5      |  |  |
|             | 2       | 100.0    | 90.5                                                | 87.0      | 95.1      | 95.3      |           |  |  |
|             |         | Avg.     | 100.0                                               | 85.2      | 77.5      | 87.2      | 89.4      |  |  |

Table C-31. Compression set effectiveness at Tremonton, Utah test site.

|                  |         |          | Compression set effectiveness over time, percent joint length |           |           |           |           |  |  |
|------------------|---------|----------|---------------------------------------------------------------|-----------|-----------|-----------|-----------|--|--|
| Material Config. | Config. | Rep. No. | 0 months                                                      | 47 months | 61 months | 73 months | 85 months |  |  |
| Kold Seal        | В       | 1        | 100.0                                                         | 100.0     | 100.0     | 100.0     | 100.0     |  |  |
| Neo Loop         |         | 2        | 100.0                                                         | 100.0     | 100.0     | 100.0     | 100.0     |  |  |
|                  |         | Avg.     | 100.0                                                         | 100.0     | 100.0     | 100.0     | 100.0     |  |  |
| Esco PV 687      | С       | 1        | 100.0                                                         | 100.0     | 99.5      | 100.0     | 93.7      |  |  |
|                  |         | 2        | 100.0                                                         | 100.0     | 100.0     | 83.9      | 74.1      |  |  |
|                  |         | Avg.     | 100.0                                                         | 100.0     | 99.7      | 91.9      | 83.9      |  |  |

Table C-32. Gap effectiveness at Tremonton, Utah test site.

|             |          |          | Gap effectiveness over time, percent joint length |           |           |           |           |  |  |
|-------------|----------|----------|---------------------------------------------------|-----------|-----------|-----------|-----------|--|--|
| Material    | Config.  | Rep. No. | 0 months                                          | 47 months | 61 months | 73 months | 85 months |  |  |
| Kold Seal   | В        | 1        | 100.0                                             | 90.7      | 25.7      | 0.0       | 0.0       |  |  |
| Neo Loop    | leo Loop | 2        | 100.0                                             | 74.6      | 58.1      | 18.5      | 6.8       |  |  |
|             |          | Avg.     | 100.0                                             | 82.6      | 41.9      | 9.3       | 3.4       |  |  |
| Esco PV 687 | С        | 1        | 100.0                                             | 100.0     | 60.6      | 54.7      | 44.4      |  |  |
|             |          | 2        | 100.0                                             | 100.0     | 68.8      | 59.4      | 57.5      |  |  |
|             |          | Avg.     | 100.0                                             | 100.0     | 64.7      | 57.0      | 51.0      |  |  |

Table C-33. Transverse joint seal performance summary at Salt Lake City, Utah test site.

| Material      | Cnfg. | Rep.<br>No. | Partial-depth<br>adhesion<br>effectiveness,<br>% edge length | Full-depth<br>adhesion<br>effectiveness,<br>% joint length | Full-depth cohesion effectiveness, % joint length | Partial-depth spall effectiveness, % joint length | Full-depth spall effectiveness, % joint length | Overall effectiveness % joint length |
|---------------|-------|-------------|--------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------|------------------------------------------------|--------------------------------------|
| Crafco RS 221 | С     | 1           | 37.9                                                         | 27.5                                                       | 36.2                                              | 3.0                                               | 0.9                                            | 64.7                                 |
| Crafco RS 221 | С     | 2           | 47.0                                                         | 48.4                                                       | 0.1                                               | 4.5                                               | 1.9                                            | 50.5                                 |
|               |       | Avg.        | 42.5                                                         | 38.0                                                       | 18.2                                              | 3.7                                               | 1.4                                            | 57.6                                 |
| Dow 888       | С     | 1           | 0.1                                                          | 28.6                                                       | 0.1                                               | 8.3                                               | 6.9                                            | 35.8                                 |
| Dow 888       | С     | 2           | 0.9                                                          | 1.6                                                        | 0.1                                               | 9.8                                               | 7.3                                            | 8.9                                  |
|               |       | Avg.        | 0.5                                                          | 15.1                                                       | 0.1                                               | 9.1                                               | 7.1                                            | 22.3                                 |
| Dow 888-SL    | С     | 1           | 13.4                                                         | 29.9                                                       | 0.0                                               | 6.2                                               | 8.1                                            | 38.0                                 |
| Dow 888-SL    | C     | 2           | 4.9                                                          | 10.2                                                       | 0.0                                               | 7.9                                               | 6.7                                            | 16.9                                 |
|               |       | Avg.        | 9.1                                                          | 20.0                                                       | 0.0                                               | 7.0                                               | 7.4                                            | 27.4                                 |
| Dow 890-SL    | Α     | 1           | 17.7                                                         | 66.1                                                       | 0.0                                               | 4.2                                               | 4.1                                            | 70.1                                 |
| Dow 890-SL    | A     | 2           | 18.8                                                         | 22.9                                                       | 0.5                                               | 8.0                                               | 5.5                                            | 28.9                                 |
|               |       | Avg.        | 18.2                                                         | 44.5                                                       | 0.3                                               | 6.1                                               | 4.8                                            | 49.5                                 |
| Dow 890-SL    | Е     | 2           | 53.9                                                         | 30.7                                                       | 0.3                                               | 9.7                                               | 8.7                                            | 39.8                                 |
| Koch 9012     | С     | 1           | 4.6                                                          | 11.5                                                       | 0.0                                               | 2.8                                               | 1.7                                            | 13.2                                 |
| Koch 9012     | С     | 2           | 7.8                                                          | 32.2                                                       | 45.4                                              | 2.5                                               | 1.2                                            | 78.8                                 |
|               |       | Avg.        | 6.2                                                          | 21.8                                                       | 22.7                                              | 2.7                                               | 1.4                                            | 46.0                                 |
| Koch 9050-SL  | С     | 1           | 0.5                                                          | 20.3                                                       | 48.3                                              | 6.1                                               | 5.3                                            | 73.8                                 |
| Koch 9050-SL  | С     | 2           | 0.1                                                          | 42.0                                                       | 43.6                                              | 4.6                                               | 4.1                                            | 89.8                                 |
|               |       | Avg.        | 0.3                                                          | 31.1                                                       | 46.0                                              | 5.4                                               | 4.7                                            | 81.8                                 |
| No Seal       | Α     | 1           | 0.0                                                          | 0.0                                                        | 0.0                                               | 5.9                                               | 6.8                                            | 6.8                                  |
| No Seal       | A     | 2           | 0.0                                                          | 0.0                                                        | 0.0                                               | 10.1                                              | 6.4                                            | 6.4                                  |
|               |       | Avg.        | 0.0                                                          | 0.0                                                        | 0.0                                               | 8.0                                               | 6.6                                            | 6.6                                  |
| No Seal       | Е     | 2           | 0.0                                                          | 0.0                                                        | 0.0                                               | 11.3                                              | 8.9                                            | 8.9                                  |

Table C-34. Overall transverse joint seal effectiveness at Salt Lake City, Utah test site.

|                             |                                    |          | Ove      | erall effectiven | ess over time, p | oercent joint le | ngth         |
|-----------------------------|------------------------------------|----------|----------|------------------|------------------|------------------|--------------|
| Material                    | Config.                            | Rep. No. | 0 months | 25 months        | 39 months        | 51 months        | 63 months    |
| Crafco                      | С                                  | 1        | 100.0    | 99.0             | 77.0             | 55.0             | 35.0         |
| RS 221                      | an lan kalijake ang Kiga<br>Kilana | 2        | 100.0    | 93.0             | 82.0             | 73.0             | 50.0         |
|                             | earlighteadag Partis<br>Noghrafi   | Avg.     | 100.0    | 96.0             | 79.5             | 64.0             | 42.5         |
| Dow 888                     | С                                  | 1        | 100.0    | 97.0             | 89.0             | 73.0             | 64.0         |
|                             |                                    | 2        | 100.0    | 98.0             | 96.0             | 94.0             | 91.0         |
|                             |                                    | Avg.     | 100.0    | 97.5             | 92.5             | 83.5             | 77.5         |
| Dow                         | С                                  | 1        | 100.0    | 91.0             | 82.0             | 74.0             | 62.0         |
| 888-SL                      |                                    | 2        | 100.0    | 97.0             | 93.0             | 89.0             | 83.0         |
|                             |                                    | Avg.     | 100.0    | 94.0             | 87.5             | 81.5             | 72.5         |
| Dow                         | A                                  | 1        | 100.0    | 65.0             | 40.0             | 34.0             | 30.0         |
| 890-SL                      |                                    | 2        | 100.0    | 92.0             | 85.0             | 78.0             | 71.0         |
|                             |                                    | Avg.     | 100.0    | 78.5             | 62.5             | 56.0             | 50.5         |
| Dow<br>890-SL               | E                                  | 1        | 100.0    | 91.0             | 81.0             | 69.0             | 60.0         |
| D.S. Brown                  | В                                  | 1 1      | 100.0    | 97.0             | 31.0             | 28.0             | 26.0         |
| E-437H                      |                                    | 2        | 100.0    | 98.0             | 34.0             | 24.0             | 21.0         |
| 그는 사이 하지 않는데<br>기업하는데 가능한다. |                                    | Avg.     | 100.0    | 97.5             | 32.5             | 26.0             | 23.5         |
| D.S. Brown                  | С                                  | 1        | 100.0    | 98.0             | 82.0             | 73.0             | 61.0         |
| V-687                       |                                    | 2        | 100.0    | 93.0             | 92.0             | 91.0             | <b>7</b> 9.0 |
|                             |                                    | Avg.     | 100.0    | 95.5             | 87.0             | 82.0             | 70.0         |
| Koch 9012                   | C                                  | 1        | 100.0    | 99.0             | 95.0             | 92.0             | 87.0         |
|                             |                                    | 2        | 100.0    | 95.0             | 80.0             | 47.0             | 21.0         |
|                             |                                    | Avg.     | 100.0    | 97.0             | 87.5             | 69.5             | 54.0         |
| Koch                        | c                                  | 1        | 100.0    | 97.0             | 64.0             | 47.0             | 26.0         |
| 9050-SL                     |                                    | 2        | 100.0    | 58.0             | 33.0             | 16.0             | 10.0         |
|                             |                                    | Avg.     | 100.0    | 77.5             | 48.5             | 31.5             | 18.0         |
| No Seal                     | Α                                  | 1        | 100.0    | 98.0             | 97.0             | 94.0             | 93.0         |
|                             |                                    | 2        | 100.0    | 97.0             | 95.0             | 95.0             | 94.0         |
|                             |                                    | Avg.     | 100.0    | 97.5             | 96.0             | 94.5             | 93.5         |
| No Seal                     | Е                                  |          | 100.0    | 96.0             | 92.0             | 91.0             | 91.0         |

Table C-35. Adhesion effectiveness at Salt Lake City, Utah test site.

|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | Adi      | nesion effective | ness over time, | percent joint le | ngth      |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|------------------|-----------------|------------------|-----------|
| Material      | Config.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Rep. No. | 0 months | 25 months        | 39 months       | 51 months        | 63 months |
| Crafco        | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1        | 100.0    | 99.4             | 79.4            | 83.2             | 72.5      |
| RS 221        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | 100.0    | 93.3             | 83.9            | 74.4             | 51.6      |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Avg.     | 100.0    | 96.4             | 81.6            | 78.8             | 62.0      |
| Dow 888       | c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1        | 100.0    | 99.9             | 92.4            | 80.1             | 71.4      |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | 100.0    | 99.9             | 99.6            | 99.4             | 98.4      |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Avg.     | 100.0    | 99.9             | 96.0            | 89.8             | 84.9      |
| Dow           | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1        | 100.0    | 94.4             | 86.9            | 81.5             | 70.1      |
| 888-SL        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | 100.0    | 99.3             | 95.1            | 93.2             | 89.8      |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Avg.     | 100.0    | 96.9             | 91.0            | 87.4             | 80.0      |
| Dow           | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1        | 100.0    | 67.5             | 42.5            | 37.0             | 33.9      |
| 890-SL        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | 100.0    | 93.5             | 87.7            | 81.8             | 77.1      |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Avg.     | 100.0    | 80.5             | 65.1            | 59.4             | 55.5      |
| Dow<br>890-SL | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1        | 100.0    | 96.0             | 88.0            | 76.3             | 69.3      |
| D.S. Brown    | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1        | 100.0    | 100.0            | 100.0           | 100.0            | 100.0     |
| E-437H        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | 100.0    | 100.0            | 100.0           | 100.0            | 100.0     |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Avg.     | 100.0    | 100.0            | 100.0           | 100.0            | 100.0     |
| D.S. Brown    | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1        | 100.0    | 100.0            | 100.0           | 100.0            | 100.0     |
| V-687         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | 100.0    | 100.0            | 100.0           | 100.0            | 100.0     |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Avg.     | 100.0    | 100.0            | 100.0           | 100.0            | 100.0     |
| Koch 9012     | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1        | 100.0    | 100.0            | 95.9            | 93.7             | 88.5      |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | 100.0    | 94.9             | 80.5            | 60.6             | 67.8      |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Avg.     | 100.0    | 97.5             | 88.2            | 77.1             | 78.2      |
| Koch          | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1        | 100.0    | 99.1             | 90.6            | 87.7             | 79.7      |
| 9050-SL       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | 100.0    | 67.1             | 62.7            | 58.4             | 58.0      |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Avg.     | 100.0    | 83.1             | 76.7            | 73.0             | 68.9      |
| No Seal       | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1        | 100.0    | 100.0            | 100.0           | 100.0            | 100.0     |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | 100.0    | 100.0            | 100.0           | 100.0            | 100.0     |
|               | e de la companya de l | Avg.     | 100.0    | 100.0            | 100.0           | 100.0            | 100.0     |
| No Seal       | Е                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1        | 100.0    | 100.0            | 100.0           | 100.0            | 100.0     |

Table C-36. Cohesion effectiveness at Salt Lake City, Utah test site.

|               |         |          | Col      | Cohesion effectiveness over time, percent joint length |           |           |           |  |  |  |
|---------------|---------|----------|----------|--------------------------------------------------------|-----------|-----------|-----------|--|--|--|
| Material      | Config. | Rep. No. | 0 months | 25 months                                              | 39 months | 51 months | 63 months |  |  |  |
| Crafco        | С       | 1        | 100.0    | 100.0                                                  | 98.3      | 72.6      | 63.8      |  |  |  |
| RS 221        |         | 2        | 100.0    | 100.0                                                  | 100.0     | 100.0     | 99.9      |  |  |  |
|               |         | Avg.     | 100.0    | 100.0                                                  | 99.2      | 86.3      | 81.8      |  |  |  |
| Dow 888       | С       | . 1      | 100.0    | 99.7                                                   | 99.8      | 99.9      | 99.9      |  |  |  |
|               |         | 2        | 100.0    | 100.0                                                  | 100.0     | 99.9      | 99.9      |  |  |  |
|               |         | Avg.     | 100.0    | 99.8                                                   | 99.9      | 99.9      | 99.9      |  |  |  |
| Dow           | С       | 1        | 100.0    | 100.0                                                  | 100.0     | 100.0     | 100.0     |  |  |  |
| 888-SL        |         | 2        | 100.0    | 100.0                                                  | 100.0     | 100.0     | 100.0     |  |  |  |
|               | Avg.    | 100.0    | 100.0    | 100.0                                                  | 100.0     | 100.0     |           |  |  |  |
| Dow           | Α       | 1        | 100.0    | 100.0                                                  | 100.0     | 100.0     | 100.0     |  |  |  |
| 890-SL        |         | 2        | 100.0    | 100.0                                                  | 100.0     | 99.9      | 99.5      |  |  |  |
|               |         | Avg.     | 100.0    | 100.0                                                  | 100.0     | 100.0     | 99.7      |  |  |  |
| Dow<br>890-SL | В       | 1        | 100.0    | 100.0                                                  | 100.0     | 100.0     | 99.7      |  |  |  |
| D.S. Brown    | В       | 1        | 100.0    | 100.0                                                  | 100.0     | 100.0     | 100.0     |  |  |  |
| E-437H        |         | 2        | 100.0    | 100.0                                                  | 100.0     | 100.0     | 100.0     |  |  |  |
|               |         | Avg.     | 100.0    | 100.0                                                  | 100.0     | 100.0     | 100.0     |  |  |  |
| D.S. Brown    | С       | 1        | 100.0    | 100.0                                                  | 100.0     | 100.0     | 100.0     |  |  |  |
| V-687         |         | 2        | 100.0    | 100.0                                                  | 100.0     | 100.0     | 100.0     |  |  |  |
|               |         | Avg.     | 100.0    | 100.0                                                  | 100.0     | 100.0     | 100.0     |  |  |  |
| Koch 9012     | С       | 1        | 100.0    | 100.0                                                  | 100.0     | 100.0     | 100.0     |  |  |  |
|               |         | 2        | 100.0    | 100.0                                                  | 100.0     | 81.3      | 54.6      |  |  |  |
|               |         | Avg.     | 100.0    | 100.0                                                  | 100.0     | 90.7      | 77.3      |  |  |  |
| Koch          | С       | 1        | 100.0    | 99.6                                                   | 77.2      | 64.2      | 51.7      |  |  |  |
| 9050-SL       |         | 2        | 100.0    | 92.3                                                   | 72.6      | 60.8      | 56.4      |  |  |  |
|               |         | Avg.     | 100.0    | 95.9                                                   | 74.9      | 62.5      | 54.0      |  |  |  |
| No Seal A     | Α       | 1        | 100.0    | 100.0                                                  | 100.0     | 100.0     | 100.0     |  |  |  |
|               |         | 2        | 100.0    | 100.0                                                  | 100.0     | 100.0     | 100.0     |  |  |  |
|               |         | Avg.     | 100.0    | 100.0                                                  | 100.0     | 100.0     | 100.0     |  |  |  |
| No Seal       | Е       | 1        | 100.0    | 100.0                                                  | 100.0     | 100.0     | 100.0     |  |  |  |

Table C-37. Spall effectiveness at Salt Lake City, Utah test site.

| garage and the second                                                                                                                                                                                                            |         |              | Spall effectiveness over time, percent joint length |           |           |           |           |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------|-----------------------------------------------------|-----------|-----------|-----------|-----------|--|--|
| Material                                                                                                                                                                                                                         | Config. | Rep. No.     | 0 months                                            | 25 months | 39 months | 51 months | 63 months |  |  |
| Crafco                                                                                                                                                                                                                           | C       | 1            | 100.0                                               | 99.5      | 99.4      | 99.2      | 99.1      |  |  |
| RS 221                                                                                                                                                                                                                           |         | 2            | 100.0                                               | 99.3      | 98.6      | 98.4      | 98.1      |  |  |
|                                                                                                                                                                                                                                  |         | Avg.         | 100.0                                               | 99.4      | 99.0      | 98.8      | 98.6      |  |  |
| Dow 888                                                                                                                                                                                                                          | C       | 1 '          | 100.0                                               | 97.7      | 96.7      | 93.8      | 93.1      |  |  |
|                                                                                                                                                                                                                                  |         | 2            | 100.0                                               | 98.6      | 96.6      | 95.0      | 92.7      |  |  |
| San Carlo de la Seguir de Carlo de Seguir de Carlo de Ca<br>Carlo de Carlo de Ca | Avg.    | 100.0        | 98.1                                                | 96.7      | 94.4      | 92.9      |           |  |  |
| Dow                                                                                                                                                                                                                              | С       | 1            | 100.0                                               | 96.9      | 94.8      | 92.9      | 91.9      |  |  |
| 888-SL                                                                                                                                                                                                                           |         | 2            | 100.0                                               | 98.3      | 97.7      | 95.7      | 93.3      |  |  |
|                                                                                                                                                                                                                                  |         | Avg.         | 100.0                                               | 97.6      | 96.3      | 94.3      | 92.6      |  |  |
| Dow                                                                                                                                                                                                                              | A       | - 1          | 100.0                                               | 97.9      | 97.3      | 96.6      | 95.9      |  |  |
| 890-SL                                                                                                                                                                                                                           |         | 2            | 100.0                                               | 98.3      | 97.0      | 96.2      | 94.5      |  |  |
|                                                                                                                                                                                                                                  |         | Avg.         | 100.0                                               | 98.1      | 97.2      | 96.4      | 95.2      |  |  |
| Dow<br>890-SL                                                                                                                                                                                                                    | Е       | : <b>1</b> ; | 100.0                                               | 95.0      | 93.5      | 92.4      | 91.3      |  |  |
| D.S. Brown                                                                                                                                                                                                                       | В       | 1            | 100.0                                               | 96.9      | 96.1      | 95.4      | 95.3      |  |  |
| E-437H                                                                                                                                                                                                                           |         | 2            | 100.0                                               | 98.8      | 97.9      | 97.1      | 96.5      |  |  |
|                                                                                                                                                                                                                                  |         | Avg.         | 100.0                                               | 97.9      | 97.0      | 96.3      | 95.9      |  |  |
| D.S. Brown                                                                                                                                                                                                                       | С       | 1            | 100.0                                               | 98.5      | 97.7      | 97.7      | 97.5      |  |  |
| V-687                                                                                                                                                                                                                            |         | 2            | 100.0                                               | 98.5      | 97.9      | 97.7      | 96.9      |  |  |
|                                                                                                                                                                                                                                  |         | Avg.         | 100.0                                               | 98.5      | 97.8      | 97.7      | 97.2      |  |  |
| Koch 9012                                                                                                                                                                                                                        | С       | 1            | 100.0                                               | 99.0      | 98.7      | 98.4      | 98.3      |  |  |
|                                                                                                                                                                                                                                  |         | 2            | 100.0                                               | 99.9      | 99.7      | 99.4      | 98.8      |  |  |
|                                                                                                                                                                                                                                  |         | Avg.         | 100.0                                               | 99.5      | 99.2      | 98.9      | 98.6      |  |  |
| Koch                                                                                                                                                                                                                             | С       |              | 100.0                                               | 98.5      | 96.5      | 95.4      | 94.7      |  |  |
| 9050-SL                                                                                                                                                                                                                          |         | 2            | 100.0                                               | 98.8      | 97.8      | 96.5      | 95.9      |  |  |
|                                                                                                                                                                                                                                  |         | Avg.         | 100.0                                               | 98.6      | 97.1      | 95.9      | 95.3      |  |  |
| No Seal                                                                                                                                                                                                                          | Α       | 1            | 100.0                                               | 98.2      | 96.5      | 94.3      | 93.2      |  |  |
|                                                                                                                                                                                                                                  |         | 2            | 100.0                                               | 97.1      | 95.1      | 94.6      | 93.6      |  |  |
|                                                                                                                                                                                                                                  |         | Avg.         | 100.0                                               | 97.7      | 95.8      | 94.4      | 93.4      |  |  |
| No Seal                                                                                                                                                                                                                          | Е       | 1 1          | 100.0                                               | 96.0      | 91.6      | 91.3      | 91.1      |  |  |

Table C-38. Twist effectiveness at Salt Lake City, Utah test site.

|                 |         |          | Twist effectiveness over time, percent joint length |           |           |           |           |  |
|-----------------|---------|----------|-----------------------------------------------------|-----------|-----------|-----------|-----------|--|
| Material Config | Config. | Rep. No. | 0 months                                            | 25 months | 39 months | 51 months | 63 months |  |
| D.S. Brown B    | 1       | 100.0    | 100.0                                               | 100.0     | 97.9      | 99.5      |           |  |
| E-437H          | E-437H  | 2        | 100.0                                               | 98.7      | 88.7      | 88.5      | 89.4      |  |
|                 |         | Avg.     | 100.0                                               | 99.4      | 94.4      | 93.2      | 94.4      |  |
| D.S. Brown      | С       | 1        | 100.0                                               | 100.0     | 100.0     | 100.0     | 100.0     |  |
| V-687           |         | 2        | 100.0                                               | 94.8      | 95.0      | 94.9      | 94.9      |  |
|                 |         | Avg.     | 100.0                                               | 97.4      | 97.5      | 97.5      | 97.5      |  |

Table C-39. Compression set effectiveness at Salt Lake City, Utah test site.

|                      |         |          | Compression set effectiveness over time, percent joint length |           |           |           |           |  |  |
|----------------------|---------|----------|---------------------------------------------------------------|-----------|-----------|-----------|-----------|--|--|
| Material             | Config. | Rep. No. | 0 months                                                      | 25 months | 39 months | 51 months | 63 months |  |  |
| D.S. Brown<br>E-437H | В       | 1        | 100.0                                                         | 100.0     | 76.2      | 72.8      | 65.5      |  |  |
|                      |         | 2        | 100.0                                                         | 100.0     | 72.1      | 50.5      | 48.2      |  |  |
|                      |         | Avg.     | 100.0                                                         | 100.0     | 74,1      | 61.6      | 56.8      |  |  |
| D.S. Brown           | C       | 1        | 100.0                                                         | 100.0     | 93.3      | 78.8      | 70.3      |  |  |
| V-687                |         | 2        | 100.0                                                         | 100.0     | 100.0     | 99.5      | 88.9      |  |  |
|                      |         | Avg.     | 100.0                                                         | 100.0     | 96.7      | 89.1      | 79.6      |  |  |

Table C-40. Gap effectiveness at Salt Lake City, Utah test site.

|            |         |          | Gap effectiveness over time, percent joint length |           |           |           |           |  |  |
|------------|---------|----------|---------------------------------------------------|-----------|-----------|-----------|-----------|--|--|
| Material   | Config. | Rep. No. | 0 months                                          | 25 months | 39 months | 51 months | 63 months |  |  |
| D.S. Brown | В       | 1        | 100.0                                             | 100.0     | 58.5      | 63.0      | 66.0      |  |  |
| E-437H     |         | 2        | 100.0                                             | 100.0     | 82.9      | 90.9      | 86.3      |  |  |
|            |         | Avg.     | 100.0                                             | 100.0     | 70.7      | 76.9      | 76.2      |  |  |
| D.S. Brown | С       | 1        | 100.0                                             | 100.0     | 92.2      | 97.6      | 92.6      |  |  |
| V-687      |         | 2        | 100.0                                             | 100.0     | 99.8      | 99.4      | 99.1      |  |  |
|            |         | Avg.     | 100.0                                             | 100.0     | 96.0      | 98.5      | 95.9      |  |  |

Table C-41. Transverse joint seal performance summary at Heber City, Utah test site.

| Material     | Cnfg.                 | Rep.<br>No. | Partial-depth<br>adhesion<br>effectiveness,<br>% edge length | Full-depth<br>adhesion<br>effectiveness,<br>% joint length | Full-depth<br>cohesion<br>effectiveness,<br>% joint length | Partial-depth spall effectiveness, % joint length | Full-depth spall effectiveness, % joint length | Overall effectiveness. % joint length |
|--------------|-----------------------|-------------|--------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------|------------------------------------------------|---------------------------------------|
| Dow 888      | С                     | 1           | 100.0                                                        | 26.2                                                       | 99.9                                                       | 90.9                                              | 96.3                                           | 22.4                                  |
| Dow 888      | С                     | 2           | 100.0                                                        | 34.0                                                       | 99.3                                                       | 89.8                                              | 76.2                                           | 9.4                                   |
|              | 1                     | Avg.        | 100.0                                                        | 30.1                                                       | 99.6                                                       | 90.3                                              | 86.2                                           | 15.9                                  |
| Dow 888-SL   | С                     | 1           | 99.0                                                         | 27.1                                                       | 100.0                                                      | 94.3                                              | 96.7                                           | 23.8                                  |
| Dow 888-SL   | С                     | 2           | 99.7                                                         | 36.2                                                       | 100.0                                                      | 94.2                                              | 78.4                                           | 14.6                                  |
|              |                       | Avg.        | 99.3                                                         | 31.7                                                       | 100.0                                                      | 94.2                                              | 87.6                                           | 19.2                                  |
| Dow 890-SL   | Α                     | 1           | 98.8                                                         | 58.7                                                       | 99.9                                                       | 91.1                                              | 95.7                                           | 54.3                                  |
| Dow 890-SL   | Α                     | 2           | 100.0                                                        | 21.2                                                       | 100.0                                                      | 92.0                                              | 89.1                                           | 10.3                                  |
|              |                       | Avg.        | 99.4                                                         | 40.0                                                       | 100.0                                                      | 91.6                                              | 92.4                                           | 32.3                                  |
| Dow 890-SL   | Е                     | 1           | 93.1                                                         | 81.1                                                       | 100.0                                                      | 75.8                                              | 92.0                                           | 73.1                                  |
| Dow 890-SL   | Е                     | 2           | 60.2                                                         | 88.4                                                       | 96.8                                                       | 81.9                                              | 77.5                                           | 62.6                                  |
|              |                       | Avg.        | 76.0                                                         | 84.9                                                       | 98.3                                                       | 79.0                                              | 84.5                                           | 67.6                                  |
| Koch 9005    | С                     | 1           | 100.0                                                        | 97.1                                                       | 87.1                                                       | 99.0                                              | 98.8                                           | 83.0                                  |
| Koch 9005    | С                     | 2           | 27.6                                                         | 19.5                                                       | 99.7                                                       | 91.8                                              | 96.2                                           | 15.5                                  |
|              |                       | Avg.        | 63.8                                                         | 58.3                                                       | 93.4                                                       | 95.4                                              | 97.5                                           | 49.2                                  |
| Koch 9012    | С                     | 1           | 94.6                                                         | 53.9                                                       | 100.0                                                      | 96.8                                              | 98.4                                           | 52.4                                  |
| Koch 9012    | С                     | 2           | 73.8                                                         | 37.0                                                       | 99.8                                                       | 95.5                                              | 98.8                                           | 35.6                                  |
|              | a, y <sup>h</sup> asa | Avg.        | 84.2                                                         | 45.5                                                       | 99.9                                                       | 96.2                                              | 98.6                                           | 44.0                                  |
| Koch 9050-SL | С                     | 1           | 100.0                                                        | 5.4                                                        | 94.3                                                       | 93.8                                              | 99.7                                           | 0.0                                   |
| Koch 9050-SL | С                     | 2           | 100.0                                                        | 72.9                                                       | 33.3                                                       | 91.2                                              | 94.6                                           | 0.8                                   |
|              |                       | Avg.        | 100.0                                                        | 39.1                                                       | 63.8                                                       | 92.5                                              | 97.1                                           | 0.1                                   |
| No Seal      | Α                     | 1           | 100.0                                                        | 100.0                                                      | 100.0                                                      | 96.2                                              | 94.9                                           | 94.9                                  |
| No Seal      | Α                     | 2           | 100.0                                                        | 99.6                                                       | 100.0                                                      | 88.7                                              | 85.6                                           | 85.2                                  |
|              |                       | Avg.        | 100.0                                                        | 99.8                                                       | 100.0                                                      | 92.4                                              | 90.2                                           | 90.0                                  |
| No Seal      | Е                     | 1           | 100.0                                                        | 100.0                                                      | 100.0                                                      | 93.3                                              | 93.0                                           | 93.0                                  |
| No Seal      | Е                     | 2           | 100.0                                                        | 100.0                                                      | 100.0                                                      | 93.1                                              | 94.3                                           | 94.3                                  |
|              |                       | Αvg.        | 100.0                                                        | 100.0                                                      | 100.0                                                      | 93.2                                              | 93.7                                           | 93.7                                  |

Table C-42. Overall transverse joint seal effectiveness at Heber City, Utah test site.

|            |         |          | Ove      | erall effectiven | ess over time, p | percent joint le | ngth      |
|------------|---------|----------|----------|------------------|------------------|------------------|-----------|
| Material   | Config. | Rep. No. | 0 months | 36 months        | 49 months        | 61 months        | 73 months |
| Dow 888    | C       | 1        | 100.0    | 71.0             | 49.0             | 30.0             | 23.0      |
|            |         | 2        | 100.0    | 66.0             | 37.0             | 22.0             | 13.0      |
|            |         | Avg.     | 100.0    | 68.5             | 43.0             | 26.0             | 18.0      |
| Dow        | C       | 1        | 100.0    | 76.0             | 58.0             | 35.0             | 24.0      |
| 888-SL     |         | 2        | 100.0    | 76.0             | 43.0             | 28.0             | 16.0      |
|            |         | Avg.     | 100.0    | 76.0             | 50.5             | 31.5             | 20.0      |
| Dow        | Α       | 1        | 100.0    | 93.0             | 82.0             | 65.0             | 54.0      |
| 890-SL     |         | 2        | 100.0    | 73.0             | 38.0             | 25.0             | 11.0      |
|            |         | Avg.     | 100.0    | 83.0             | 60.0             | 45.0             | 32.5      |
| Dow        | Е       | 1        | 100,0    | 93.0             | 83.0             | 77.0             | 73.0      |
| 890-SL     |         | 2        | 100.0    | 74.0             | 74.0             | 72.0             | 62.0      |
|            |         | Avg.     | 100,0    | 83.5             | 78.5             | 74.5             | 67.5      |
| D.S. Brown | В       | 1        | 100.0    | 100.0            | 86.0             | 85.0             | 78.0      |
| E-437H     |         | 2        | 100.0    | 94.0             | 78.0             | 72.0             | 66.0      |
|            |         | Avg.     | 100.0    | 97.0             | 82.0             | 78.5             | 72.0      |
| D.S. Brown | c       | 1        | 100.0    | 99.0             | 93.0             | 93.0             | 92.0      |
| V-687      |         | 2        | 100.0    | 98.0             | 96.0             | 94.0             | 93.0      |
|            |         | Avg.     | 100.0    | 98.5             | 94.5             | 93.5             | 92.5      |
| Koch 9005  | C       | 1        | 100.0    | 99.0             | 99.0             | 98.0             | 83.0      |
|            |         | 2        | 100.0    | 99.0             | 70.0             | 27.0             | 16.0      |
|            |         | Avg.     | 100.0    | 99.0             | 84.5             | 62.5             | 49.5      |
| Koch 9012  | C       | 1        | 100.0    | 98.0             | 89.0             | 68.0             | 52.0      |
|            |         | 2        | 100.0    | 100.0            | 81.0             | 67.0             | 36.0      |
|            |         | Avg.     | 100.0    | 99.0             | 85.0             | 67.5             | 44.0      |
| Koch       | C       | 1        | 100.0    | 3.0              | 0.0              | 0.0              | 0.0       |
| 9050-SL    |         | 2        | 100.0    | 83.0             | 13.0             | 7.0              | 3.0       |
|            |         | Avg.     | 100.0    | 43.0             | 6.5              | 3.5              | 1.5       |
| No Seal    | A       | 1        | 100.0    | 99.0             | 96.0             | 95.0             | 95.0      |
|            |         | 2        | 100.0    | 92.0             | 87.0             | 86.0             | 85.0      |
|            |         | Avg.     | 100.0    | 95,5             | 91.5             | 90.5             | 90.0      |
| No Seal    | Е       | 1        | 100.0    | 97.0             | 95.0             | 94.0             | 93.0      |
|            |         | 2        | 100.0    | 97.0             | 96.0             | 95.0             | 94.0      |
|            |         | Avg.     | 100.0    | 97.0             | 95.5             | 94.5             | 93.5      |

Table C-43. Adhesion effectiveness at Heber City, Utah test site.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |          | Ac       | lhesion effective | ness over time, | percent joint len | gth       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------|----------|-------------------|-----------------|-------------------|-----------|
| Material                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Config. | Rep. No. | 0 months | 36 months         | 49 months       | 61 months         | 73 months |
| Dow 888                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | С       | 1        | 100.0    | 71.8              | 50.8            | 32.9              | 26.2      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 2        | 100.0    | 71.2              | 55.0            | 44.6              | 34.0      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | Avg.     | 100.0    | 71.5              | 52.9            | 38.8              | 30.1      |
| Dow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C       | 1        | 100.0    | 78.1              | 60.0            | 37.6              | 27.1      |
| 888-SL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         | 2        | 100.0    | 81.0              | 60.0            | 47.8              | 36.2      |
| e verticalité de la company de |         | Avg.     | 100.0    | 79.5              | 60.0            | 42.7              | 31.7      |
| Dow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Α       | 1        | 100.0    | 93.7              | 83.0            | 68.7              | 58.7      |
| 890-SL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         | 2        | 100.0    | 76.9              | 46.3            | 35.3              | 21.2      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | Avg.     | 100.0    | 85.3              | 64.7            | 52.0              | 40.0      |
| Dow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Е       | 1        | 100.0    | 90.3              | 89.6            | 84.9              | 82.6      |
| 890-SL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         | 2        | 100.0    | 78.0              | 97.5            | 96.2              | 88.4      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | Avg.     | 100.0    | 84.1              | 93.5            | 90.5              | 85.5      |
| D.S. Brown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | В       | 1        | 100.0    | 100.0             | 100.0           | 100.0             | 100.0     |
| E-437H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         | 2        | 100.0    | 100.0             | 100.0           | 100.0             | 100.0     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | Avg.     | 100.0    | 100.0             | 100.0           | 100.0             | 100.0     |
| D.S. Brown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | С       | 1        | 100.0    | 100.0             | 100.0           | 100.0             | 100.0     |
| V-687                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         | 2        | 100.0    | 100.0             | 100.0           | 100.0             | 100.0     |
| A Section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         | Avg.     | 100.0    | 100.0             | 100.0           | 100.0             | 100.0     |
| Koch 9005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | С       | 1        | 100.0    | 100.0             | 100.0           | 99.9              | 97.1      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 2        | 100.0    | 99.3              | 71.9            | 30.0              | 19.5      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | Avg.     | 100.0    | 99.7              | 86.0            | 64.9              | 58.3      |
| Koch 9012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | С       | 1        | 100.0    | 99.2              | 90.0            | 72.9              | 53.9      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 2        | 100.0    | 99.9              | 83.0            | 68.5              | 37.0      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | Avg.     | 100.0    | 99.5              | 86.5            | 70.7              | 45.5      |
| Koch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | С       | 1        | 100.0    | 4.5               | 4.6             | 5.1               | 5.4       |
| 9050-SL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         | 2        | 100.0    | 84.7              | 77.9            | 75.6              | 72.9      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | Avg.     | 100.0    | 44.6              | 41.3            | 40.3              | 39.1      |
| No Seal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Α       | 1        | 100.0    | 100.0             | 100.0           | 100.0             | 100.0     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 2        | 100.0    | 100.0             | 100.0           | 100.0             | 99.6      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | Avg.     | 100.0    | 100.0             | 100.0           | 100.0             | 99.8      |
| No Seal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Е       | 1        | 100.0    | 100.0             | 100.0           | 100.0             | 100.0     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 2        | 100.0    | 100.0             | 100.0           | 100.0             | 100.0     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | Avg.     | 100.0    | 100.0             | 100.0           | 100.0             | 100.0     |

Table C-44. Cohesion effectiveness at Heber City, Utah test site.

| i de la composición de la composición<br>Composición de la composición de la co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | Co       | hesion effective | ness over time, | percent joint len | gth       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|------------------|-----------------|-------------------|-----------|
| Material                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Config.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Rep. No. | 0 months | 36 months        | 49 months       | 61 months         | 73 months |
| Dow 888                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1        | 100.0    | 100.0            | 99.9            | 99.9              | 99.9      |
| in the second se | n da kanangga.<br>Malangga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2        | 100.0    | 99.2             | 98.2            | 99.4              | 99.3      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Avg.     | 100.0    | 99.6             | 99.1            | 99.7              | 99.6      |
| Dow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1        | 100.0    | 100.0            | 100.0           | 100.0             | 100.0     |
| 888-SL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | frankriger († 1864)<br>Sternager                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2        | 100.0    | 100.0            | 100.0           | 100.0             | 100.0     |
| t in the state of  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Avg.     | 100.0    | 100.0            | 100.0           | 100.0             | 100.0     |
| Dow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1        | 100.0    | 100.0            | 100.0           | 99.9              | 99.9      |
| 890-SL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | 100.0    | 100.0            | 100.0           | 100.0             | 100.0     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Avg.     | 100.0    | 100.0            | 100.0           | 100.0             | 100.0     |
| Dow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Е                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1        | 100.0    | 100.0            | 100.0           | 100.0             | 100.0     |
| 890-SL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | 100.0    | 100.0            | 97.7            | 97.6              | 96.8      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Avg.     | 100.0    | 100.0            | 98.9            | 98.8              | 98.4      |
| D.S. Brown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1        | 100.0    | 100.0            | 100.0           | 100.0             | 100.0     |
| E-437H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | 100.0    | 100.0            | 100.0           | 100.0             | 100.0     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Avg.     | 100.0    | 100.0            | 100.0           | 100.0             | 100.0     |
| D.S. Brown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1        | 100.0    | 100.0            | 100.0           | 100.0             | 100.0     |
| V-687                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | and the state of t | 2        | 100.0    | 100.0            | 100.0           | 100.0             | 100.0     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Avg.     | 100.0    | 100.0            | 100.0           | 100.0             | 100.0     |
| Koch 9005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1        | 100.0    | 99.9             | 99.8            | 99.4              | 87.1      |
| 7 (1 a) (1 a |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | 100.0    | 99.8             | 99.7            | 100.0             | 99.7      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | er tagalisa si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Avg.     | 100.0    | 99.9             | 99.7            | 99.7              | 93.4      |
| Koch 9012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1        | 100.0    | 100.0            | 100.0           | 100.0             | 100.0     |
| og til skiller for dag og til                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | 100.0    | 100.0            | 98.6            | 99.8              | 99.8      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Avg.     | 100.0    | 100.0            | 99.3            | 99.9              | 99.9      |
| Koch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1        | 100.0    | 98.2             | 95.0            | 94.2              | 94.3      |
| 9050-SL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | 100.0    | 99.9             | 38.1            | 34.9              | 33.3      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Avg.     | 100.0    | 99.1             | 66.6            | 64.6              | 63.8      |
| No Seal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1        | 100.0    | 100.0            | 100.0           | 100.0             | 100.0     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | 100.0    | 100.0            | 100.0           | 100.0             | 100.0     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Avg.     | 100.0    | 100.0            | 100.0           | 100.0             | 100.0     |
| No Seal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Е                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1        | 100.0    | 100.0            | 100.0           | 100.0             | 100.0     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | 100.0    | 100.0            | 100.0           | 100.0             | 100.0     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Avg.     | 100.0    | 100.0            | 100.0           | 100.0             | 100.0     |

Table C-45. Spall effectiveness at Heber City, Utah test site.

|            |         |          |          | Spall effectivene | ss over time, pe | rcent joint lengt | h         |
|------------|---------|----------|----------|-------------------|------------------|-------------------|-----------|
| Material   | Config. | Rep. No. | 0 months | 36 months         | 49 months        | 61 months         | 73 months |
| Dow 888    | С       | 1        | 100.0    | 99.5              | 98.8             | 97.6              | 96.3      |
|            |         | 2        | 100.0    | 95.9              | 83.2             | 77.2              | 76.2      |
|            |         | Avg.     | 100.0    | 97.7              | 91.0             | 87.4              | 86.2      |
| Dow        | c       | 1        | 100.0    | 98.3              | 98.2             | 97.5              | 96.7      |
| 888-SL     |         | 2        | 100.0    | 95.4              | 83.4             | 79.9              | 78.4      |
|            |         | Avg.     | 100.0    | 96.8              | 90.8             | 88.7              | 87.6      |
| Dow        | A       | 1        | 100.0    | 99.0              | 98.7             | 96.6              | 95.7      |
| 890-SL     |         | 2        | 100.0    | 95.8              | 91.5             | 90.0              | 89.1      |
|            |         | Avg.     | 100.0    | 97.4              | 95.1             | 93.3              | 92.4      |
| Dow        | Е       | 1        | 100.0    | 95.4              | 93.9             | 92.0              | 91.1      |
| 890-SL     |         | 2        | 100.0    | 84.3              | 79.0             | 78.0              | 77.5      |
|            |         | Avg.     | 100.0    | 89.8              | 86.4             | 85.0              | 84.3      |
| D.S. Brown | В       | 1        | 100.0    | 99.7              | 99.5             | 98.9              | 98.4      |
| E-437H     |         | 2        | 100.0    | 98.4              | 97.0             | 95.4              | 94.9      |
|            |         | Avg.     | 100.0    | 99.0              | 98.3             | 97.1              | 96.7      |
| D.S. Brown | C       | 1        | 100.0    | 99.9              | 99.9             | 99.4              | 98.8      |
| V-687      |         | 2        | 100.0    | 98.1              | 96.5             | 94.4              | 93.9      |
|            |         | Avg.     | 100.0    | 99.0              | 98.2             | 96.9              | 96.4      |
| Koch 9005  | C       | 1        | 100.0    | 99.6              | 99.4             | 99.0              | 98.8      |
|            |         | 2        | 100.0    | 99.8              | 98.2             | 96.9              | 96.2      |
|            |         | Avg.     | 100.0    | 99.7              | 98.8             | 97.9              | 97.5      |
| Koch 9012  | С       | 1        | 100.0    | 99.2              | 99.1             | 98.6              | 98.4      |
|            |         | 2        | 100.0    | 99.7              | 99.2             | 99.1              | 98.8      |
|            |         | Avg.     | 100.0    | 99.5              | 99.2             | 98.8              | 98.6      |
| Koch       | C       | 1        | 100.0    | 100.0             | 99.7             | 99.7              | 99.7      |
| 9050-SL    |         | 2        | 100.0    | 98.1              | 97.0             | 96.3              | 94.6      |
|            |         | Avg.     | 100.0    | 99.0              | 98.4             | 98.0              | 97.1      |
| No Seal    | Α       | 1        | 100.0    | 99.0              | 96.1             | 95.4              | 94.9      |
|            |         | 2        | 100.0    | 91.9              | 87.0             | 86.1              | 85.6      |
|            |         | Avg.     | 100.0    | 95.4              | 91.6             | 90.8              | 90.2      |
| No Seal    | Е       | 1        | 100.0    | 96.9              | 94.5             | 93.6              | 93.0      |
|            |         | 2        | 100.0    | 97.4              | 95.7             | 95.0              | 94.3      |
|            |         | Avg.     | 100.0    | 97.1              | 95.1             | 94.3              | 93.7      |

Table C-46. Twist effectiveness at Heber City, Utah test site.

|                      |         |          | Twist effectiveness over time, percent joint length |           |           |           |           |  |  |
|----------------------|---------|----------|-----------------------------------------------------|-----------|-----------|-----------|-----------|--|--|
| Material             | Config. | Rep. No. | 0 months                                            | 36 months | 49 months | 61 months | 73 months |  |  |
| D.S. Brown<br>E-437H | 1       | 100.0    | 100.0                                               | 99.9      | 99.9      | 100.0     |           |  |  |
|                      | 2       | 100.0    | 95.5                                                | 86.1      | 94.1      | 93.3      |           |  |  |
|                      | Avg.    | 100.0    | 97.8                                                | 93.0      | 97.0      | 96.6      |           |  |  |
| D.S. Brown           | С       | 1        | 100.0                                               | 99.0      | 98.3      | 98.5      | 98.8      |  |  |
| V-687                |         | 2        | 100.0                                               | 100.0     | 100.0     | 100.0     | 100.0     |  |  |
|                      |         | Avg.     | 100.0                                               | 99.5      | 99.2      | 99.2      | 99.4      |  |  |

Table C-47. Compression set effectiveness at Heber City, Utah test site.

|                        |         |          | Compression set effectiveness over time, percent joint length |           |           |           |           |  |  |
|------------------------|---------|----------|---------------------------------------------------------------|-----------|-----------|-----------|-----------|--|--|
| Material Config        | Config. | Rep. No. | 0 months                                                      | 36 months | 49 months | 61 months | 73 months |  |  |
| D.S. Brown B<br>E-437H | 1       | 100.0    | 100.0                                                         | 97.4      | 93.2      | 83.7      |           |  |  |
|                        |         | 2        | 100.0                                                         | 100.0     | 95.6      | 86.2      | 82.0      |  |  |
|                        |         | Avg.     | 100.0                                                         | 100.0     | 96.5      | 89.7      | 82.8      |  |  |
| D.S. Brown             | C       | 1        | 100.0                                                         | 100.0     | 100.0     | 100.0     | 98.9      |  |  |
| V-687                  |         | 2        | 100.0                                                         | 100.0     | 100.0     | 100.0     | 100.0     |  |  |
|                        |         | Avg.     | 100.0                                                         | 100.0     | 100.0     | 100.0     | 99.5      |  |  |

Table C-48. Gap effectiveness at Heber City, Utah test site.

|            |         |          | Gap effectiveness over time, percent joint length |           |           |           |           |  |  |
|------------|---------|----------|---------------------------------------------------|-----------|-----------|-----------|-----------|--|--|
| Material   | Config. | Rep. No. | 0 months                                          | 36 months | 49 months | 61 months | 73 months |  |  |
| D.S. Brown | В       |          | 100.0                                             | 100.0     | 87.3      | 99.7      | 99.0      |  |  |
| E-437H     |         | 2        | 100.0                                             | 100.0     | 98.6      | 97.7      | 97.8      |  |  |
|            |         | Avg.     | 100.0                                             | 100.0     | 93.0      | 98.7      | 98.4      |  |  |
| D.S. Brown | С       | 9 4 6 1  | 100.0                                             | 100.0     | 99.4      | 99.5      | 99.7      |  |  |
| V-687      |         | 2        | 100.0                                             | 100.0     | 100.0     | 100.0     | 100.0     |  |  |
|            |         | Avg.     | 100.0                                             | 100.0     | 99.7      | 99.8      | 99.9      |  |  |

Table C-49. Longitudinal joint seal performance summary at Mesa, Arizona test site.

| Material                               | Cnfg.                                   | Rep.<br>No. | Partial-depth<br>adhesion<br>effectiveness,<br>% edge length | Full-depth<br>adhesion<br>effectiveness,<br>% joint length | Full-depth cohesion effectiveness, % joint length | Partial-depth spall effectiveness, % joint length | Full-depth spall effectiveness, % joint length | Overall effectiveness, % joint length |
|----------------------------------------|-----------------------------------------|-------------|--------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------|------------------------------------------------|---------------------------------------|
| Crafco RS 221                          | С                                       | 1           | 100.0                                                        | 100.0                                                      | 0.5                                               | 97.9                                              | 99.6                                           | 0.2                                   |
| Crafco RS 221                          | С                                       | 2           | 43.8                                                         | 45.7                                                       | 99.3                                              | 97.3                                              | 98.9                                           | 43.9                                  |
| g talaka kale                          |                                         | Avg.        | 72.2                                                         | 73.1                                                       | 49.4                                              | 97.6                                              | 99.3                                           | 21.8                                  |
| Crafco SS 444                          | С                                       | 1           | 100.0                                                        | 99.1                                                       | 11.0                                              | 98.8                                              | 99.6                                           | 9.8                                   |
| Crafco SS 444                          | С                                       | 2           | 88.0                                                         | 99.5                                                       | 98.2                                              | 96.6                                              | 100.0                                          | 97.6                                  |
|                                        |                                         | Avg.        | 94.1                                                         | 99.3                                                       | 54.1                                              | 97.7                                              | 99.8                                           | 53.2                                  |
| Crafco 903-SL                          | C                                       | 1           | 98.9                                                         | 100.0                                                      | 99.1                                              | 96.4                                              | 99.1                                           | 98.1                                  |
| Crafco 903-SL                          | С                                       | 2           | 98.0                                                         | 99.8                                                       | 100.0                                             | 93.1                                              | 98.9                                           | 98.7                                  |
|                                        |                                         | Avg.        | 98.4                                                         | 99.9                                                       | 99.5                                              | 94.8                                              | 99.0                                           | 98.4                                  |
| Dow 888                                | С                                       | 1           | 100.0                                                        | 98.9                                                       | 99.8                                              | 93.0                                              | 99.3                                           | 98.0                                  |
| Dow 888                                | С                                       | 2           | 100.0                                                        | 100.0                                                      | 100.0                                             | 92.9                                              | 96.7                                           | 96.7                                  |
|                                        |                                         | Avg.        | 100.0                                                        | 99.5                                                       | 99.9                                              | 92.9                                              | 98.0                                           | 97.3                                  |
| Dow 888-SL                             | С                                       | 1           | 99.6                                                         | 99.4                                                       | 100.0                                             | 95.5                                              | 98.6                                           | 98.1                                  |
| Dow 888-SL                             | С                                       | 2           | 98.0                                                         | 97.0                                                       | 99.6                                              | 86.3                                              | 97.2                                           | 93.9                                  |
|                                        | i alame ji                              | Avg.        | 98.8                                                         | 98.2                                                       | 99.8                                              | 90.8                                              | 97.9                                           | 95.9                                  |
| Dow 890-SL                             | Α                                       | 1           | 98.6                                                         | 98.4                                                       | 100.0                                             | 95.7                                              | 98.3                                           | 96.7                                  |
| Dow 890-SL                             | Α                                       | 2           | 96.0                                                         | 97.6                                                       | 98.9                                              | 96.6                                              | 95.5                                           | 92.0                                  |
|                                        |                                         | Avg.        | 97.3                                                         | 98.0                                                       | 99.4                                              | 96.2                                              | 96.8                                           | 94.3                                  |
| Dow 890-SL                             | В                                       | 1           | 100.0                                                        | 99.6                                                       | 100.0                                             | 97.2                                              | 99.6                                           | 99.2                                  |
| Dow 890-SL                             | В                                       | 2           | 99.8                                                         | 100.0                                                      | 100.0                                             | 98.6                                              | 98.8                                           | 98.8                                  |
|                                        | 1                                       | Avg.        | 99.9                                                         | 99.8                                                       | 100.0                                             | 97.9                                              | 99.1                                           | 99.0                                  |
| Dow 890-SL                             | С                                       | 1           | 80.6                                                         | 98.4                                                       | 100.0                                             | 95.5                                              | 94.8                                           | 93.2                                  |
| Dow 890-SL                             | С                                       | 2           | 98.6                                                         | 99.1                                                       | 100.0                                             | 97.2                                              | 99.8                                           | 98.9                                  |
|                                        |                                         | Avg.        | 90.0                                                         | 98.8                                                       | 100.0                                             | 96.4                                              | 97.4                                           | 96.2                                  |
| Mobay 960-SL                           | С                                       | 1           | 99.2                                                         | 99.4                                                       | 99.2                                              | 98.6                                              | 99.8                                           | 98.4                                  |
| Mobay 960-SL                           | С                                       | 2           | 98.2                                                         | 99.6                                                       | 99.6                                              | 98.0                                              | 96.6                                           | 95.9                                  |
|                                        | - 14 - 15 - 15 - 15 - 15 - 15 - 15 - 15 | Avg.        | 98.7                                                         | 99.5                                                       | 99.4                                              | 98.3                                              | 98.1                                           | 97.1                                  |
| No Seal                                | Α                                       | 1           | 100.0                                                        | 100.0                                                      | 100.0                                             | 98.1                                              | 99.4                                           | 99.4                                  |
| No Seal                                | Α                                       | 2           | 100.0                                                        | 100.0                                                      | 100.0                                             | 98.0                                              | 99.3                                           | 99.3                                  |
| ************************************** |                                         | Avg.        | 100.0                                                        | 100.0                                                      | 100.0                                             | 98.1                                              | 99.3                                           | 99.3                                  |

Table C-50. Overall longitudinal joint seal effectiveness at Mesa, Arizona test site.

|          |         |          | Ove      | erall effectiven | ess over time, p | percent joint le | ngth      |
|----------|---------|----------|----------|------------------|------------------|------------------|-----------|
| Material | Config. | Rep. No. | 0 months | 45 months        | 60 months        | 72 months        | 83 months |
| Crafco   | С       | 1        | 100.0    | 33.5             | 3.8              | 2.0              | 0.3       |
| RS 221   |         | 2        | 100.0    | 82.2             | 62.1             | 54.2             | 45.7      |
|          |         | Avg.     | 100.0    | 57.8             | 33.0             | 28.1             | 23.0      |
| Crafco   | С       | 1        | 100.0    | 94.4             | 53.8             | 25.0             | 9.0       |
| SS 444   |         | 2        | 100.0    | 99.6             | 99.3             | 98.9             | 97.8      |
|          |         | Avg.     | 100.0    | 97.0             | 76.5             | 62.0             | 53.4      |
| Crafco   | С       | 1        | 100.0    | 99.2             | 98.2             | 97.7             | 98.2      |
| 903-SL   |         | 2        | 100.0    | 100.0            | 99.8             | 98.9             | 98.7      |
|          |         | Avg.     | 100.0    | 99.6             | 99.0             | 98.3             | 98.5      |
| Dow 888  | С       | 1        | 100.0    | 99.3             | 98.0             | 98.0             | 98.0      |
|          |         | 2        | 100.0    | 100.0            | 97.6             | 97.1             | 97.1      |
|          |         | Avg.     | 100.0    | 99.6             | 97.8             | 97.5             | 97.5      |
| Dow      | С       | 1        | 100.0    | 98.8             | 98.5             | 98.5             | 98.1      |
| 888-SL   |         | 2        | 100.0    | 98.5             | 95.6             | 94.8             | 93.9      |
|          |         | Avg.     | 100.0    | 98.7             | 97.0             | 96.6             | 96.0      |
| Dow      | Α       | 1        | 100.0    | 99.2             | 98.4             | 97.7             | 96.7      |
| 890-SL   |         | 2        | 100.0    | 98.6             | 93.7             | 92.3             | 92.1      |
|          |         | Avg.     | 100.0    | 98.9             | 96.1             | 95.0             | 94.4      |
| Dow      | В       | 1        | 100.0    | 99.8             | 99.8             | 99.6             | 99.2      |
| 890-SL   |         | 2        | 100.0    | 99.6             | 98.7             | 98.7             | 98.7      |
|          |         | Avg.     | 100.0    | 99.7             | 99.2             | 99.2             | 99.0      |
| Dow      | С       | 1        | 100.0    | 98.0             | 97.6             | 94.4             | 93.5      |
| 890-SL   |         | 2        | 100.0    | 99.8             | 99.1             | 99.1             | 99.0      |
|          |         | Avg.     | 100.0    | 98.9             | 98.4             | 96.8             | 96.2      |
| Mobay    | С       | 1        | 100.0    | 99.2             | 98.4             | 98.8             | 98.4      |
| 960-SL   |         | 2        | 100.0    | 99.1             | 96.6             | 96.3             | 95.8      |
|          |         | Avg.     | 100.0    | 99.1             | 97.5             | 97.6             | 97.1      |
| No Seal  | A       | 1        | 100.0    | 100.0            | 100.0            | 99.4             | 99.4      |
|          |         | 2        | 100.0    | 100.0            | 99.5             | 99.3             | 99.3      |
|          |         | Avg.     | 100.0    | 100.0            | 99.7             | 99.3             | 99.3      |

Table C-51. Adhesion effectiveness of longitudinal joint seals at Mesa, Arizona test site.

|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | A        | dhesion effective | eness over time, p | ercent joint leng | th        |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|-------------------|--------------------|-------------------|-----------|
| Material | Config.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Rep. No. | 0 months | 45 months         | 60 months          | 72 months         | 83 months |
| Crafco   | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1        | 100.0    | 44.3              | 4.6                | 98.2              | 100.0     |
| RS 221   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | 100.0    | 82.2              | 62.0               | 54.2              | 45.7      |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Avg.     | 100.0    | 63.3              | 33.3               | 76.2              | 72.8      |
| Crafco   | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1        | 100.0    | 99.6              | 99.5               | 96.8              | 99.1      |
| SS 444   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | 100.0    | 100.0             | 100.0              | 99.6              | 99.5      |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Avg.     | 100.0    | 99.8              | 99.7               | 98.2              | 99.3      |
| Crafco   | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1        | 100.0    | 100.0             | 100.0              | 100.0             | 100.0     |
| 903-SL   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | 100.0    | 100.0             | 100.0              | 99.8              | 99.8      |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Avg.     | 100.0    | 100.0             | 100.0              | 99.9              | 99.9      |
| Dow 888  | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1        | 100.0    | 100.0             | 99.3               | 99.8              | 98.9      |
| D0# 000  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | 100.0    | 100.0             | 100.0              | 100.0             | 100.0     |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Avg.     | 100.0    | 100.0             | 99.6               | 99.9              | 99.4      |
| Dow      | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1        | 100.0    | 99.6              | 99.4               | 99.4              | 99.4      |
| 888-SL   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | 100.0    | 99.1              | 97.4               | 97.4              | 97.0      |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Avg.     | 100.0    | 99.3              | 98.4               | 98.4              | 98.2      |
| Dow      | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1        | 100.0    | 99.4              | 99.0               | 99.0              | 98.4      |
| 890-SL   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | 100.0    | 99.5              | 98.6               | 97.6              | 97.6      |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Avg.     | 100.0    | 99.4              | 98.8               | 98.3              | 98.0      |
| Dow      | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1        | 100.0    | 99.8              | 99.8               | 99.6              | 99.6      |
| 890-SL   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | 100.0    | 100.0             | 100.0              | 100.0             | 100.0     |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Avg.     | 100.0    | 99.9              | 99.9               | 99.8              | 99.8      |
| Dow      | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1        | 100.0    | 99.6              | 99.6               | 98.8              | 98.4      |
| 890-SL   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | 100.0    | 99.8              | 99.3               | 99.3              | 99.1      |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Avg.     | 100.0    | 99.7              | 99.5               | 99.1              | 98.8      |
| Mobay    | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1        | 100.0    | 99.8              | 99.0               | 99.6              | 99.4      |
| 960-SL   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | 100.0    | 99.8              | 99.8               | 99.8              | 99.6      |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Avg.     | 100.0    | 99.8              | 99.4               | 99.7              | 99.5      |
| No Seal  | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1        | 100.0    | 100.0             | 100.0              | 100.0             | 100.0     |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | 100.0    | 100.0             | 100.0              | 100.0             | 100.0     |
|          | e de la companya de l | Avg.     | 100.0    | 100.0             | 100.0              | 100.0             | 100.0     |
| Dow 888  | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X1       | 100.0    | 100.0             | 100.0              | 100.0             | 100.0     |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X2       | 100.0    | 100.0             | 100.0              | 100.0             | 99.8      |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Avg.     | 100.0    | 100.0             | 100.0              | 100.0             | 99.9      |
| Dow 888  | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X1       | 100.0    | 100.0             | 100.0              | 100.0             | 100.0     |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X2       | 100.0    | 100.0             | 100.0              | 100.0             | 100.0     |
|          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Avg.     | 100.0    | 100.0             | 100.0              | 100.0             | 100.0     |

Table C-52. Cohesion effectiveness of longitudinal joint seals at Mesa, Arizona test site.

|          |                                                                                             |             | C C      | Cohesion effective | eness over time, p | ercent joint leng | th       |
|----------|---------------------------------------------------------------------------------------------|-------------|----------|--------------------|--------------------|-------------------|----------|
| Material | Config.                                                                                     | Rep. No.    | 0 months | 45 months          | 60 months          | 72 months         | 83 month |
| Crafco   | С                                                                                           | 1           | 100.0    | 89.7               | 91.5               | 4.1               | 0.5      |
| RS 221   |                                                                                             | 2           | 100.0    | 99.6               | 99.6               | 99.6              | 99.3     |
|          |                                                                                             | Avg.        | 100.0    | 94.7               | 95.6               | 51.9              | 49.9     |
| Crafco   | С                                                                                           | 1           | 100.0    | 95.4               | 59.0               | 30.7              | 11.0     |
| SS 444   |                                                                                             | 2           | 100.0    | 99.6               | 99.3               | 99.3              | 98.2     |
|          |                                                                                             | Avg.        | 100.0    | 97.5               | 79.2               | 65.0              | 54.6     |
| Crafco   | С                                                                                           | 1           | 100.0    | 99.8               | 99.8               | 98.5              | 99.1     |
| 903-SL   |                                                                                             | 2           | 100.0    | 100.0              | 100.0              | 100.0             | 100.0    |
|          |                                                                                             | Avg.        | 100.0    | 99.9               | 99.9               | 99.2              | 99.5     |
| Dow 888  | С                                                                                           | 1           | 100.0    | 99.3               | 99.6               | 98.9              | 99.8     |
|          |                                                                                             | 2           | 100.0    | 100.0              | 100.0              | 100.0             | 100.0    |
|          |                                                                                             | Avg.        | 100.0    | 99.6               | 99.8               | 99.4              | 99.9     |
| Dow      | C                                                                                           | 1           | 100.0    | 100.0              | 100.0              | 100.0             | 100.0    |
| 888-SL   |                                                                                             | 2           | 100.0    | 100.0              | 99.6               | 99.6              | 99.6     |
|          |                                                                                             | Avg.        | 100.0    | 100.0              | 99.8               | 99.8              | 99.8     |
| Dow      | A                                                                                           | 1           | 100.0    | 100.0              | 100.0              | 100.0             | 100.0    |
| 890-SL   | r Alle Haller III e e e e<br>La companya di Alle III e e e<br>La companya di Alle III e e e | 2           | 100.0    | 100.0              | 99.1               | 98.9              | 98.9     |
|          |                                                                                             | Avg.        | 100.0    | 100.0              | 99.5               | 99.5              | 99.5     |
| Dow      | В                                                                                           | 1.          | 100.0    | 100.0              | 100.0              | 100.0             | 100.0    |
| 890-SL   |                                                                                             | 2           | 100.0    | 99.8               | 100.0              | 100.0             | 100.0    |
|          |                                                                                             | Avg.        | 100.0    | 99.9               | 100.0              | 100.0             | 100.0    |
| Dow      | C                                                                                           | 1           | 100.0    | 100.0              | 100.0              | 100.0             | 100.0    |
| 890-SL   |                                                                                             | 2           | 100.0    | 100.0              | 100.0              | 100.0             | 100.0    |
|          |                                                                                             | Avg.        | 100.0    | 100.0              | 100.0              | 100.0             | 100.0    |
| Mobay    | С                                                                                           | 1 1 1 1 1 1 | 100.0    | 99.4               | 99.4               | 99.2              | 99.2     |
| 960-SL   |                                                                                             | 2           | 100.0    | 100.0              | 100.0              | 100.0             | 99.6     |
|          |                                                                                             | Avg.        | 100.0    | 99.7               | 99.7               | 99.6              | 99.4     |
| No Seal  | Α                                                                                           | 1           | 100.0    | 100.0              | 100.0              | 100.0             | 100.0    |
|          |                                                                                             | 2           | 100.0    | 100.0              | 100.0              | 100.0             | 100.0    |
|          |                                                                                             | Avg.        | 100.0    | 100.0              | 100.0              | 100.0             | 100.0    |
| Dow 888  | С                                                                                           | X1          | 100.0    | 100.0              | 100.0              | 100.0             | 100.0    |
|          |                                                                                             | X2          | 100.0    | 100.0              | 100.0              | 100.0             | 99.6     |
|          |                                                                                             | Avg.        | 100.0    | 100.0              | 100.0              | 100.0             | 99.8     |
| Dow 888  | С                                                                                           | X1          | 100.0    | 100.0              | 100.0              | 100.0             | 100.0    |
|          |                                                                                             | X2          | 100.0    | 100.0              | 100.0              | 100.0             | 100.0    |
|          |                                                                                             | Avg.        | 100.0    | 100.0              | 100.0              | 100.0             | 100.0    |

Table C-53. Spall effectiveness of longitudinal joint seals at Mesa, Arizona test site.

|          |         |          | *        | Spall effectivene | ess over time, per | rcent joint length |           |
|----------|---------|----------|----------|-------------------|--------------------|--------------------|-----------|
| Material | Config. | Rep. No. | 0 months | 45 months         | 60 months          | 72 months          | 83 months |
| Crafco   | C       | 1        | 100.0    | 99.6              | 99.6               | 99.6               | 99.6      |
| RS 221   |         | 2        | 100.0    | 99.3              | 99.1               | 98.9               | 98.9      |
|          |         | Avg.     | 100.0    | 99.5              | 99.4               | 99.3               | 99.3      |
| Crafco   | С       | 1        | 100.0    | 100.0             | 99.8               | 99.6               | 99.6      |
| SS 444   |         | 2        | 100.0    | 100.0             | 100.0              | 100.0              | 100.0     |
|          |         | Avg.     | 100.0    | 100.0             | 99.9               | 99.8               | 99.8      |
| Crafco   | С       | 1        | 100.0    | 99.4              | 99.1               | 99.1               | 99.1      |
| 903-SL   |         | 2        | 100.0    | 100.0             | 99.8               | 99.1               | 98.9      |
|          |         | Avg.     | 100.0    | 99.7              | 99.4               | 99.1               | 99.0      |
| Dow 888  | С       | 1        | 100.0    | 100.0             | 99.3               | 99.3               | 99.3      |
|          |         | 2        | 100.0    | 100.0             | 97.3               | 96.7               | 96.7      |
|          |         | Avg.     | 100.0    | 100.0             | 98.3               | 98.0               | 98.0      |
| Dow      | С       | 1        | 100.0    | 99.2              | 99.0               | 99.0               | 98.6      |
| 888-SL   |         | 2        | 100.0    | 99.4              | 98.5               | 97.8               | 97.2      |
|          |         | Avg.     | 100.0    | 99.3              | 98.8               | 98.4               | 97.9      |
| Dow      | Α       | 1        | 100.0    | 99.8              | 99.4               | 98.6               | 98.3      |
| 890-SL   |         | 2        | 100.0    | 99.1              | 96.0               | 95.7               | 95.5      |
|          |         | Avg.     | 100.0    | 99.5              | 97.7               | 97.1               | 96.9      |
| Dow      | В       | 1        | 100.0    | 100.0             | 100.0              | 100.0              | 99.6      |
| 890-SL   |         | 2        | 100.0    | 99.8              | 98.8               | 98.8               | 98.8      |
|          |         | Avg.     | 100.0    | 99.9              | 99.4               | 99.4               | 99.2      |
| Dow      | С       | 1        | 100.0    | 98.3              | 97.9               | 95.3               | 94.8      |
| 890-SL   |         | 2        | 100.0    | 100.0             | 99.8               | 99.8               | 99.8      |
|          |         | Avg.     | 100.0    | 99.1              | 98.8               | 97.6               | 97.3      |
| Mobay    | С       | 1        | 100.0    | 100.0             | 100.0              | 100.0              | 99.8      |
| 960-SL   |         | 2        | 100.0    | 99.3              | 97.2               | 96.6               | 96.6      |
|          |         | Avg.     | 100.0    | 99.6              | 98.6               | 98.3               | 98.2      |
| No Seal  | Α       | 1        | 100.0    | 100.0             | 100.0              | 99.4               | 99.4      |
|          |         | 2        | 100.0    | 100.0             | 99.5               | 99.3               | 99.3      |
|          |         | Avg.     | 100.0    | 100.0             | 99.7               | 99.3               | 99.3      |
| Dow 888  | С       | X1       | 100.0    | 99.6              | 99.5               | 99.5               | 99.5      |
|          |         | X2       | 100.0    | 97.3              | 97.3               | 96.7               | 96.7      |
|          |         | Avg.     | 100.0    | 98.5              | 98.4               | 98.1               | 98.1      |
| Dow 888  | С       | X1       | 100.0    | 99.6              | 99.5               | 99.5               | 99.5      |
|          |         | X2       | 100.0    | 99.8              | 99.0               | 99.0               | 99.0      |
|          |         | Avg.     | 100.0    | 99.7              | 99.2               | 99.2               | 99.2      |

Table C-54. Longitudinal joint seal performance summary at Wells, Nevada test site.

| Material      | Cnfg.      | Rep.<br>No. | Partial-depth<br>adhesion<br>effectiveness,<br>% edge length | Full-depth<br>adhesion<br>effectiveness,<br>% joint length | Full-depth<br>cohesion<br>effectiveness,<br>% joint length | Partial-depth<br>spall<br>effectiveness,<br>% joint length | Full-depth spall<br>effectiveness,<br>% joint length | Overall effectiveness, % joint length |
|---------------|------------|-------------|--------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------|---------------------------------------|
| Crafco 902    | С          | 1           | 94.7                                                         | 99.2                                                       | 95.5                                                       | 91.9                                                       | 96.8                                                 | 91.5                                  |
| Crafco 902    | С          | 2           | 90.4                                                         | 98.0                                                       | 97.3                                                       | 93.7                                                       | 91.2                                                 | 86.4                                  |
|               |            | Avg.        | 92.4                                                         | 98.6                                                       | 96.4                                                       | 92.8                                                       | 93.8                                                 | 88.8                                  |
| Crafco 903-SL | С          | 1           | 75.8                                                         | 98.1                                                       | 97.3                                                       | 94.3                                                       | 85.3                                                 | 80.6                                  |
| Crafco 903-SL | С          | 2           | 89.5                                                         | 99.8                                                       | 95.0                                                       | 91.3                                                       | 94.5                                                 | 89.3                                  |
|               |            | Avg.        | 83.2                                                         | 99.0                                                       | 96.1                                                       | 92.7                                                       | 90.3                                                 | 85.3                                  |
| Dow 888       | С          | 1           | 90.9                                                         | 98.8                                                       | 91.1                                                       | 93.1                                                       | 91.6                                                 | 81.5                                  |
| Dow 888       | С          | 2           | 95.7                                                         | 99.8                                                       | 95.7                                                       | 93.4                                                       | 98.7                                                 | 94.2                                  |
|               |            | Avg.        | 93.3                                                         | 99.3                                                       | 93.4                                                       | 93.3                                                       | 95.2                                                 | 88.0                                  |
| Dow 888       | С          | 3           | 98.5                                                         | 94.8                                                       | 99.2                                                       | 100.0                                                      | 94.3                                                 | 88.2                                  |
| Dow 888       | С          | 4           | 95.6                                                         | 94.4                                                       | 97.4                                                       | 100.0                                                      | 93.1                                                 | 84.9                                  |
| Dow 888-SL    | С          | 1           | 91.5                                                         | 86.0                                                       | 98.6                                                       | 94.8                                                       | 89.8                                                 | 74.4                                  |
| Dow 888-SL    | С          | 2           | 96.8                                                         | 91.2                                                       | 99.4                                                       | 93.6                                                       | 96.6                                                 | 87.2                                  |
|               | and Markey | Avg.        | 94.2                                                         | 88.7                                                       | 99.0                                                       | 94.2                                                       | 93.2                                                 | 80.9                                  |
| Dow 890-SL    | С          | 1           | 84.4                                                         | 95.0                                                       | 100.0                                                      | 93.1                                                       | 76.0                                                 | 71.0                                  |
| Dow 890-SL    | С          | 2           | 77.2                                                         | 88.5                                                       | 99.8                                                       | 92.7                                                       | 95.7                                                 | 84.0                                  |
|               |            | Avg.        | 80.3                                                         | 91.3                                                       | 99.9                                                       | 92.8                                                       | 87.1                                                 | 78.3                                  |
| Mobay 960     | С          | 1           | 98.3                                                         | 98.3                                                       | 86.0                                                       | 96.7                                                       | 95.6                                                 | 79.9                                  |
| Mobay 960     | С          | 2           | 96.0                                                         | 99.6                                                       | 94.6                                                       | 93.6                                                       | 88.3                                                 | 82.5                                  |
|               |            | Avg.        | 97.1                                                         | 99.0                                                       | 90.5                                                       | 95.1                                                       | 91.8                                                 | 81.2                                  |
| Polyethylene  | F          | 1           | 100.0                                                        | 100.0                                                      | 100.0                                                      | 100.0                                                      | 79.2                                                 | 79.2                                  |
| No Seal       | С          | 1 1         | 100.0                                                        | 100.0                                                      | 100.0                                                      | 100.0                                                      | 100.0                                                | 100.0                                 |

Table C-55. Overall effectiveness of longitudinal joint seals at Wells, Nevada test site.

|                                                |         |          | Over     | all effectivene | ss over time, | percent joint l | ength     |
|------------------------------------------------|---------|----------|----------|-----------------|---------------|-----------------|-----------|
| Material                                       | Config. | Rep. No. | 0 months | 37 months       | 50 months     | 62 months       | 74 months |
| Crafco 902                                     | С       | 1        | 100.0    | 98.3            | 96.4          | 92.8            | 91.0      |
|                                                |         | 2        | 100.0    | 97.3            | 93.7          | 89.0            | 85.3      |
|                                                |         | Avg.     | 100.0    | 97.8            | 95.1          | 90.9            | 88.2      |
| Crafco                                         | С       | 1        | 100.0    | 96.4            | 93.9          | 85.1            | 80.6      |
| 903-SL                                         |         | 2        | 100.0    | 98.1            | 94.9          | 91.8            | 89.3      |
|                                                |         | Avg.     | 100.0    | 97.2            | 94.4          | 88.4            | 84.9      |
| Dow 888                                        | С       | 1        | 100.0    | 97.4            | 94.1          | 86.5            | 80.7      |
|                                                |         | 2        | 100.0    | 98.0            | 96.3          | 94.2            | 93.6      |
|                                                |         | Avg.     | 100.0    | 97.7            | 95.2          | 90.3            | 87.1      |
| Dow 888                                        | С       | 1        | 100.0    | 98.0            | 95.1          | 87.2            | 83.7      |
|                                                |         | 1        | 100.0    | 98.5            | 95.8          | 88.1            | 82.9      |
| Dow                                            | С       | 1        | 100.0    | 99.1            | 98.4          | 86.2            | 75.8      |
| 888-SL                                         |         | 2        | 100.0    | 99.1            | 99.1          | 93.7            | 86.2      |
|                                                |         | Avg.     | 100.0    | 99.1            | 98.7          | 89.9            | 81.0      |
| Dow                                            | С       | 1        | 100.0    | 94.9            | 92.2          | 75.6            | 70.6      |
| 890-SL                                         |         | 2        | 100.0    | 98.2            | 98.1          | 93.9            | 84.6      |
|                                                |         | Avg.     | 100.0    | 96.5            | 95.2          | 84.8            | 77.6      |
| D.S. Brown<br>V-812                            | D       | 1        | 100.0    | 85.5            | 43.7          | 42.5            | 29.8      |
| Mobay 960                                      | С       | 1        | 100.0    | 96.9            | 92.2          | 84.1            | 79.3      |
| er græter i de de<br>Rede er er er er<br>Er er |         | 2        | 100.0    | 95.7            | 92.0          | 86.1            | 83.4      |
|                                                |         | Avg.     | 100.0    | 96.3            | 92.1          | 85.1            | 81.3      |
| No Seal                                        | С       | 1        | 100.0    | 100.0           | 100.0         | 100.0           | 100.0     |
| Polyethylene                                   | F       | 1        | 100.0    | 100.0           | 100.0         | 87.8            | 75.7      |

Table C-56. Adhesion effectiveness of longitudinal joint seals at Wells, Nevada test site.

|                     |         |          | Adhes    | ion effectiven | ess over time | , percent joint | length   |
|---------------------|---------|----------|----------|----------------|---------------|-----------------|----------|
| Material            | Config. | Rep. No. | 0 months | 37 months      | 50 months     | 62 months       | 74 month |
| Crafco 902          | С       | 1        | 100.0    | 100.0          | 100.0         | 99.5            | 99.1     |
|                     |         | 2        | 100.0    | 99.8           | 99.5          | 99.8            | 97.2     |
|                     |         | Avg.     | 100.0    | 99.9           | 99.8          | 99.7            | 98.1     |
| Crafco              | С       | 1        | 100.0    | 99.8           | 99.1          | 99.5            | 97.7     |
| 903-SL              |         | 2        | 100.0    | 99.8           | 99.8          | 99.8            | 99.8     |
|                     |         | Avg.     | 100.0    | 99.8           | 99.4          | 99.7            | 98.7     |
| Dow 888             | С       | 1        | 100.0    | 100.0          | 99.8          | 99.5            | 98.6     |
|                     |         | 2        | 100,0    | 100.0          | 100.0         | 99.8            | 99.8     |
|                     |         | Avg.     | 100.0    | 100.0          | 99.9          | 99.7            | 99.2     |
| Dow 888             | С       | 1        | 100.0    | 99.5           | 97.9          | 92.8            | 92.8     |
|                     |         | 1        | 100.0    | 99.3           | 99.3          | 94.9            | 94.9     |
| Dow                 | С       | 1        | 100.0    | 99.5           | 98.4          | 94.9            | 83.3     |
| 888-SL              |         | 2        | 100.0    | 99.3           | 99.3          | 94.9            | 89.1     |
|                     |         | Avg.     | 100.0    | 99.4           | 98.8          | 94.9            | 86.2     |
| Dow                 | С       | 1        | 100.0    | 99.8           | 99.8          | 99.1            | 94.7     |
| 890-SL              |         | 2        | 100.0    | 97.9           | 97.7          | 95.6            | 84.0     |
|                     |         | Avg.     | 100.0    | 98.8           | 98.7          | 97.3            | 89.4     |
| D.S. Brown<br>V-812 | D       | 1        | 100.0    | 100.0          | 100.0         | 100.0           | 100.0    |
| Mobay 960           | С       | 1        | 100.0    | 99.5           | 99.8          | 99.1            | 97.9     |
|                     |         | 2        | 100.0    | 99.8           | 99.8          | 100.0           | 99.5     |
|                     |         | Avg.     | 100.0    | 99.7           | 99.8          | 99.5            | 98.7     |
| No Seal             | С       | 1        | 100.0    | 100.0          | 100.0         | 100.0           | 100.0    |
| Polyethylene        | F       | 1        | 100.0    | 100.0          | 100.0         | 100.0           | 100.0    |
|                     | D       | 2        | 100.0    | 100.0          | 100.0         | 100.0           | 100.0    |

Table C-57. Cohesion effectiveness of longitudinal joint seals at Wells, Nevada test site.

|                     |         |          | Cohe     | sion effectiver | ess over time, | percent joint | length    |
|---------------------|---------|----------|----------|-----------------|----------------|---------------|-----------|
| Material            | Config. | Rep. No. | 0 months | 37 months       | 50 months      | 62 months     | 74 months |
| Crafco 902          | C       | 1        | 100.0    | 98.1            | 95.8           | 95.1          | 94.4      |
|                     |         | 2        | 100.0    | 98.8            | 97.5           | 96.5          | 96.3      |
| 4. 4.               |         | Avg.     | 100.0    | 98.5            | 96.6           | 95.8          | 95.4      |
| Crafco              | C       | 1        | 100.0    | 100.0           | 100.0          | 97.5          | 96.8      |
| 903-SL              |         | 2        | 100.0    | 98.4            | 94.2           | 93.3          | 93.1      |
|                     |         | Avg.     | 100.0    | 99.2            | 97.1           | 95.4          | 94.9      |
| Dow 888             | С       | 1        | 100.0    | 97.9            | 94.2           | 90.7          | 89.4      |
|                     |         | 2        | 100.0    | 97.9            | 96.8           | 94.9          | 94.7      |
|                     |         | Avg.     | 100.0    | 97.9            | 95.5           | 92.8          | 92.0      |
| Dow 888             | C       | 1        | 100.0    | 99.1            | 99.1           | 98.8          | 98.8      |
|                     |         | 1        | 100.0    | 99.3            | 98.1           | 97.7          | 97.7      |
| Dow                 | С       | 1        | 100.0    | 99.8            | 100.0          | 98.6          | 98.4      |
| 888-SL              |         | 2        | 100.0    | 99.8            | 99.8           | 99.5          | 99.3      |
|                     |         | Avg.     | 100.0    | 99.8            | 99.9           | 99.1          | 98.8      |
| Dow                 | C       | 1        | 100.0    | 100.0           | 100.0          | 100.0         | 100.0     |
| 890-SL              |         | 2        | 100.0    | 99.8            | 99.8           | 99.8          | 99.8      |
|                     |         | Avg.     | 100.0    | 99.9            | 99.9           | 99.9          | 99.9      |
| D.S. Brown<br>V-812 | D       | 1        | 100.0    | 100.0           | 100.0          | 100.0         | 100.0     |
| Mobay 960           | C       | 1        | 100.0    | 97.2            | 92.4           | 86.6          | 83.1      |
|                     |         | 2        | 100.0    | 97.2            | 93.5           | 93.5          | 92.8      |
|                     |         | Avg.     | 100.0    | 97.2            | 92.9           | 90.0          | 88.0      |
| No Seal             | С       | 1        | 100.0    | 100.0           | 100.0          | 100.0         | 100.0     |
| Polyethylene        | F       | 1        | 100.0    | 100.0           | 100.0          | 100.0         | 100.0     |
|                     | D       | 2        | 100.0    | 100.0           | 100.0          | 100.0         | 100.0     |

Table C-58. Spall effectiveness of longitudinal joint seals at Wells, Nevada test site.

|                     |          |          | Sp       | all effectivenes | s over time, pe | ercent joint len | gth       |
|---------------------|----------|----------|----------|------------------|-----------------|------------------|-----------|
| Material            | Config.  | Rep. No. | 0 months | 37 months        | 50 months       | 62 months        | 74 months |
| Crafco 902          | С        | 1        | 100.0    | 100.0            | 100.0           | 97.0             | 96.1      |
|                     |          | 2        | 100.0    | 98.1             | 95.1            | 90.0             | 88.0      |
|                     |          | Avg.     | 100.0    | 99.1             | 97.6            | 93.5             | 92.0      |
| Crafco              | C        | 1        | 100.0    | 96.1             | 94.0            | 85.4             | 82.6      |
| 903-SL              |          | 2        | 100.0    | 99.3             | 98.8            | 95.6             | 92.4      |
|                     |          | Avg.     | 100.0    | 97.7             | 96.4            | 90.5             | 87.5      |
| Dow 888             | C        | 1        | 100.0    | 99.1             | 99.1            | 94.4             | 90.0      |
|                     |          | 2        | 100.0    | 100.0            | 99.3            | 98.8             | 98.4      |
|                     |          | Avg.     | 100.0    | 99.5             | 99.2            | 96.6             | 94.2      |
| Dow 888             | С        | 1        | 100.0    | 99.3             | 97.5            | 92.1             | 92.1      |
|                     |          | 1        | 100.0    | 98.8             | 95.8            | 90.3             | 90.3      |
| Dow                 | С        | 1        | 100.0    | 99.5             | 99.5            | 89.4             | 87.7      |
| 888-SL              |          | 2        | 100.0    | 99.8             | 99.8            | 98.1             | 95.8      |
|                     |          | Avg.     | 100.0    | 99.7             | 99.7            | 93.8             | 91.8      |
| Dow                 | С        | 1        | 100.0    | 94.4             | 91.7            | 75.0             | 74.3      |
| 890-SL              |          | 2        | 100.0    | 99.8             | 99.8            | 95.8             | 94.0      |
|                     |          | Avg.     | 100.0    | 97.1             | 95.7            | 85.4             | 84.1      |
| D.S. Brown<br>V-812 | <b>D</b> | 1        | 100.0    | 99.3             | 99.1            | 99.8             | 99.3      |
| Mobay 960           | С        | 1        | 100.0    | 99.8             | 99.1            | 95.8             | 94.7      |
|                     |          | 2        | 100.0    | 96.8             | 95.4            | 86.8             | 84.3      |
|                     |          | Avg.     | 100.0    | 98.3             | 97.2            | 91.3             | 89.5      |
| No Seal             | С        | 1        | 100.0    | 100.0            | 100.0           | 100.0            | 100.0     |
| Polyethylene        | F        | 1        | 100.0    | 100.0            | 100.0           | 75.7             | 75.7      |
|                     | D        | 2        | 100.0    | 100.0            | 100.0           | 100.0            | 100.0     |

Table C-59. Twist effectiveness of longitudinal joint seals at Wells, Nevada test site.

|            |         |          | Twist effectiveness over time, percent joint len |           |           |           |           |  |  |
|------------|---------|----------|--------------------------------------------------|-----------|-----------|-----------|-----------|--|--|
| Material   | Config. | Rep. No. | 0 months                                         | 37 months | 50 months | 62 months | 74 months |  |  |
| D.S. Brown | D       | 1        | 100.0                                            | 85.2      | 32.4      | 33.1      | 29.6      |  |  |
| V-812      |         |          |                                                  | 1         |           |           |           |  |  |

Table C-60. Compression set effectiveness of longitudinal joint seals at Wells, Nevada test site.

|                     |         |          | Compression set effectiveness over time, percent joint length |           |           |           |           |  |  |
|---------------------|---------|----------|---------------------------------------------------------------|-----------|-----------|-----------|-----------|--|--|
| Material            | Config. | Rep. No. | 0 months                                                      | 37 months | 50 months | 62 months | 74 months |  |  |
| D.S. Brown<br>V-812 | D       | 1        | 100.0                                                         | 100.0     | 100.0     | 100.0     | 71.5      |  |  |

Table C-61. Gap effectiveness of longitudinal joint seals at Wells, Nevada test site.

|                     |         |          | Gap effectiveness over time, percent joint length |           |           |           |           |  |
|---------------------|---------|----------|---------------------------------------------------|-----------|-----------|-----------|-----------|--|
| Material            | Config. | Rep. No. | 0 months                                          | 37 months | 50 months | 62 months | 74 months |  |
| D.S. Brown<br>V-812 | D       | 1        | 100.0                                             | 100.0     | 100.0     | 63.4      | 99.1      |  |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | *   |    |   |     |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----|----|---|-----|---|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |     |    |   |     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |     |    |   |     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |     | *. |   |     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |     |    |   |     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |     |    |   |     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |     |    |   |     | • |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |     |    |   |     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |     |    |   |     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |     |    |   |     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |     |    |   |     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |     |    |   |     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |     |    |   |     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |     |    |   |     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |     |    |   |     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |     |    |   |     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |     | ** |   |     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |     |    |   |     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |     |    |   |     |   |
| d<br>d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |     |    |   |     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |     |    |   |     |   |
| 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |     |    |   |     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | · · |    | • | . • |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |     |    |   |     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |     |    |   |     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |     |    |   |     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |     |    |   |     | • |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |     |    |   |     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |     |    |   |     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |     |    |   |     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |     |    |   |     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |     |    |   |     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |     |    |   |     |   |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |     |    |   |     |   |
| į.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |     |    | • |     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |     |    |   |     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |     |    |   |     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |     |    |   |     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | : |     |    |   |     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |     |    |   |     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |     |    |   |     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |     |    |   |     |   |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |     |    |   |     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |     |    |   |     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |     |    |   |     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |     |    |   |     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |     | •  |   |     |   |
| And the second s |   |     |    |   |     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |     |    |   |     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |     |    |   |     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |     |    |   |     |   |
| And the control of th |   |     |    |   |     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |     |    |   |     |   |
| resolution and statements of the formation of the principal of the formation of the formati |   |     |    |   |     |   |
| nde Verbouden mande datte, de State Landen Fregge, des plans de Periode de Carlo de Alexandes de Carlo de Alexandes de Carlo de C |   |     |    |   |     |   |
| of the first of th |   |     |    |   |     |   |
| The properties of the section of the section of the properties of the section of  |   |     |    |   |     |   |
| en en fantagrande de sentacom en en entre de sentación de sentación de sentación de sentación de sentación de s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |     |    |   |     |   |
| en en de de desprise de la companyación de la compa |   |     |    |   |     |   |
| en en de de de de de de deservación de la company de deservación de deservación de deservación de deservación                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |     |    |   |     |   |
| enominated of the first of the second of the |   |     |    |   |     |   |
| en de la compressión                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |     |    |   |     |   |
| energy to the company of the company |   |     |    |   |     |   |
| en e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |     |    |   |     |   |
| energy to the company to the company of the company |   |     |    |   |     |   |
| energy to the company of the company |   |     |    |   |     |   |
| energy to the company of the state of the st |   |     |    |   |     |   |
| energy the control of |   |     |    |   |     |   |
| ender for the state of the stat |   |     |    |   |     |   |
| ender the company of  |   |     |    |   |     |   |
| endiged to the company of the compan |   |     |    |   |     |   |
| ender the second of the second |   |     |    |   |     |   |
| And the second s |   |     |    |   |     |   |

